我正在尝试一次执行Scipy的curve_fit
的许多迭代,以便避免循环并因此提高速度。
这与this problem非常相似,已解决。但是,由于函数是分段的(不连续的),因此该解决方案不适用于此处。
考虑以下示例:
import numpy as np
from numpy import random as rng
from scipy.optimize import curve_fit
rng.seed(0)
N=20
X=np.logspace(-1,1,N)
Y = np.zeros((4, N))
for i in range(0,4):
b = i+1
a = b
print(a,b)
Y[i] = (X/b)**(-a) #+ 0.01 * rng.randn(6)
Y[i, X>b] = 1
这将产生以下数组:
如您所见,这在
X==b
处是不连续的。我可以迭代地使用a
来检索b
和curve_fit
的原始值:def plaw(r, a, b):
""" Theoretical power law for the shape of the normalized conditional density """
import numpy as np
return np.piecewise(r, [r < b, r >= b], [lambda x: (x/b)**-a, lambda x: 1])
coeffs=[]
for ix in range(Y.shape[0]):
print(ix)
c0, pcov = curve_fit(plaw, X, Y[ix])
coeffs.append(c0)
但是,根据
X
,Y
和循环的大小,此过程可能会非常慢,因此我试图通过尝试获取coeffs
而不需要循环来加快处理速度。到目前为止,我还没有运气。可能重要的事情:
X
和Y
仅包含正值a
和b
始终为正编辑
据我所知:
y=np.ma.masked_where(Y<1.01, Y)
lX = np.log(X)
lY = np.log(y)
A = np.vstack([lX, np.ones(len(lX))]).T
m,c=np.linalg.lstsq(A, lY.T)[0]
print('a=',-m)
print('b=',np.exp(-c/m))
但是,即使没有任何噪音,输出也仍然是:
a= [0.18978965578339158 1.1353633705997466 2.220234483915197 3.3324502660995714]
b= [339.4090881838179 7.95073481873057 6.296592007396107 6.402567167503574]
这比我希望得到的要糟糕得多。
最佳答案
这里有三种加快速度的方法。您没有提供所需的速度或精度,甚至没有向量大小,因此买家要当心。
TL; DR
时间:
len 1 2 3 4
1000 0.045 0.033 0.025 0.022
10000 0.290 0.097 0.029 0.023
100000 3.429 0.767 0.083 0.030
1000000 0.546 0.046
1) Original Method
2) Pre-estimate with Subset
3) M Newville [linear log-log estimate](https://stackoverflow.com/a/44975066/7311767)
4) Subset Estimate (Use Less Data)
用子集进行预先估计(方法2):
只需运行两次
curve_fit
即可获得不错的加速效果,其中第一次使用curve_fit
的一小部分数据来快速估算。然后,该估计值将用于整个数据集的curve_fit
播种。x, y = current_data
stride = int(max(1, len(x) / 200))
c0 = curve_fit(power_law, x[0:len(x):stride], y[0:len(y):stride])[0]
return curve_fit(power_law, x, y, p0=c0)[0]
M Newville linear log-log estimate(方法3):
使用M Newville提出的对数估计,速度也相当快。由于OP担心Newville提出的初始估计方法,因此该方法使用ojit_code及其子集来提供曲线断点的估计。
x, y = current_data
stride = int(max(1, len(x) / 200))
c0 = curve_fit(power_law, x[0:len(x):stride], y[0:len(y):stride])[0]
index_max = np.where(x > c0[1])[0][0]
log_x = np.log(x[:index_max])
log_y = np.log(y[:index_max])
result = linregress(log_x, log_y)
return -result[0], np.exp(-result[1] / result[0])
return (m, c), result
使用较少的数据(方法4):
最后,前两种方法所使用的种子机制对样本数据提供了很好的估计。当然,这是示例数据,因此您的里程可能会有所不同。
stride = int(max(1, len(x) / 200))
c0 = curve_fit(power_law, x[0:len(x):stride], y[0:len(y):stride])[0]
测试代码:
import numpy as np
from numpy import random as rng
from scipy.optimize import curve_fit
from scipy.stats import linregress
fit_data = {}
current_data = None
def data_for_fit(a, b, n):
key = a, b, n
if key not in fit_data:
rng.seed(0)
x = np.logspace(-1, 1, n)
y = np.clip((x / b) ** (-a) + 0.01 * rng.randn(n), 0.001, None)
y[x > b] = 1
fit_data[key] = x, y
return fit_data[key]
def power_law(r, a, b):
""" Power law for the shape of the normalized conditional density """
import numpy as np
return np.piecewise(
r, [r < b, r >= b], [lambda x: (x/b)**-a, lambda x: 1])
def method1():
x, y = current_data
return curve_fit(power_law, x, y)[0]
def method2():
x, y = current_data
return curve_fit(power_law, x, y, p0=method4()[0])
def method3():
x, y = current_data
c0, pcov = method4()
index_max = np.where(x > c0[1])[0][0]
log_x = np.log(x[:index_max])
log_y = np.log(y[:index_max])
result = linregress(log_x, log_y)
m, c = -result[0], np.exp(-result[1] / result[0])
return (m, c), result
def method4():
x, y = current_data
stride = int(max(1, len(x) / 200))
return curve_fit(power_law, x[0:len(x):stride], y[0:len(y):stride])
from timeit import timeit
def runit(stmt):
print("%s: %.3f %s" % (
stmt, timeit(stmt + '()', number=10,
setup='from __main__ import ' + stmt),
eval(stmt + '()')[0]
))
def runit_size(size):
print('Length: %d' % size)
if size <= 100000:
runit('method1')
runit('method2')
runit('method3')
runit('method4')
for i in (1000, 10000, 100000, 1000000):
current_data = data_for_fit(3, 3, i)
runit_size(i)
关于python - 一次完成多次curve_fit的迭代以实现分段功能,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/44957705/