我有工作代码,可以根据列表字典中的规则对数据进行分类。我想知道是否可以通过使用list/dictionary理解或.values()去掉嵌套的for循环来提高代码的效率。
import pandas as pd
df=pd.DataFrame({'Animals': [ 'Python', 'Anaconda', 'Viper', 'Cardinal',
'Trout', 'Robin', 'Bass', 'Salmon', 'Turkey', 'Chicken'],
'Noise': ['Hiss','SSS','Hisss','Chirp','Splash','Chirp',
'Gulp','Splash','Gobble','Cluck'],
})
snakenoise =['Hiss','SSS','Hisss', 'Wissss', 'tseee']
birdnoise =['Chirp', 'squeak', 'Cluck', 'Gobble']
fishnoise =['Splash', 'Gulp', 'Swim']
AnimalDex = {'Snake':['0', 'slither',snakenoise],
'Bird':['2','fly', birdnoise],
'Fish':['0','swim',fishnoise],
}
df['movement'] = ''
for key, value in AnimalDex.items():
for i in range(len(AnimalDex[key][2])):
df.loc[df.Noise.str.contains(AnimalDex[key][2][i]),'movement'] = AnimalDex[key][1]
print (df)
这是输出
Animals Noise movement
0 Python Hiss slither
1 Anaconda SSS slither
2 Viper Hisss slither
3 Cardinal Chirp fly
4 Trout Splash swim
5 Robin Chirp fly
6 Bass Gulp swim
7 Salmon Splash swim
8 Turkey Gobble fly
9 Chicken Cluck fly
最佳答案
如果只使用值而不是键和索引,则可以真正简化循环。
for animal in AnimalDex.values():
for value in animal[2]:
df.loc[df.Noise.str.contains(value),'movement'] = animal[1]
关于python - Python 3有效地遍历列表字典,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/29916372/