为了对图形数据进行仿真/挖掘,我需要一次将成千上万的数据写入高性能的PostgreSQL 9.5数据库中。目前,我正在使用准备好的语句和“逐行插入”来执行此操作。它工作正常-但速度太慢。我找不到关于如何使用Copy语句通过CopyManager将集合中的数据(数组,向量或ArrayList)写入Postgresql DB表的任何信息。我将很高兴得到一个简单的例子。如何处理数据类型? CopyManager不要求任何数据类型。
我当前的代码:
package io;
import db.PostgresConnector;
import entitiesP.Edge;
import entitiesP.Graph;
import entitiesP.Node;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.sql.Timestamp;
public class DbLogger {
public DbLogger(Graph g, int simNr) throws Exception {
Connection conn = new PostgresConnector().getConnection();
//1. Graph Data File:
//-------------------------------------------------
//Filename und Header:
long timestamp = getTimeStamp();
//Daten:
logGraphData(conn, simNr,
g.getNodes().size(),
g.getEdges().size(),
g.getRadiusAndDiameter()[0],
g.getRadiusAndDiameter()[1],
g.getRadiusAndDiameter()[2],
Node.maxDegree,
//new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(g.getSimStartTime()),
g.getSimStartTime(),
timestamp);
//2. Node Data File:
//-------------------------------------------------
//Daten einsammeln:
for (Node n: g.getNodes()){
logNodeData( conn, simNr ,
n.getId(),
n.getDegree(),
n.getClusteringCoefficient(),
timestamp);
}
//3. RelationData File:
//-------------------------------------------------
int[][] distance = g.getDistanceMatrix().clone();
//AdMatrix dist = new AdMatrix(distance);
//dist.printAdMatrix();
Object[] edges = g.getEdges().toArray();
//adjacency nodes
int numNodes = g.getNodes().size();
int numEdges = g.getEdges().size();
//Edges:
for (int i=0; i < edges.length; i++){
Object[] nodes = ((Edge) edges[i]).getNodes().toArray(); //pair of nodes of an edge
//pairs A--B
logRelationData(conn, simNr ,
((Node) nodes[0]).getId() ,
((Node) nodes[1]).getId() ,
distance[((Node) nodes[0]).getId() -1][((Node) nodes[1]).getId() -1] ,
((Edge) edges[i]).getTieStrength() ,
((Edge) edges[i]).getNeighborhoodOverlap(((Node) nodes[0]),((Node) nodes[1])) ,
timestamp
);
//pairs B--A
logRelationData(conn, simNr ,
((Node) nodes[1]).getId() ,
((Node) nodes[0]).getId() ,
distance[((Node) nodes[0]).getId() -1][((Node) nodes[1]).getId() -1] ,
((Edge) edges[i]).getTieStrength() ,
((Edge) edges[i]).getNeighborhoodOverlap(((Node) nodes[0]),((Node) nodes[1])) ,
timestamp
);
//end edges----------------------------
}
//System.out.println("NumNodes: " + numNodes);
//non-adjacent nodes
for (int i=0; i < numNodes; i++){
for (int j=0; j < numNodes; j++){
if (distance[i][j] != 1 && i != j ){
logRelationData(conn, simNr,
(i+1),
(j+1),
(distance[i][j]==0? 999 : distance[i][j]) , //0 auf infinity setzen (999)
-1,
-1,
timestamp
);
}
}
}
conn.close();
}
private static void logGraphData(Connection con, int sim_no, int numberOfNodes, int numberOfEdges, int radius, int diameter, int effDiameter, int maxDegree, long startTime, long timestamp) throws SQLException{
PreparedStatement preStmt = con.prepareStatement("INSERT INTO public.GRAPH_DATA (" + "SIM_NO,NUMBER_OF_NODES,NUMBER_OF_EDGES,RADIUS,DIAMETER,EFF_DIAMETER,MAX_DEGREE,START_TIME,TIME_STAMP) VALUES (?,?,?,?,?,?,?,?,?)");
preStmt.setInt(1, sim_no);
preStmt.setInt(2, numberOfNodes);
preStmt.setInt(3, numberOfEdges);
preStmt.setInt(4, radius);
preStmt.setInt(5, diameter);
preStmt.setInt(6, effDiameter);
preStmt.setInt(7, maxDegree);
preStmt.setTimestamp(8, new Timestamp(startTime));
preStmt.setTimestamp(9, new Timestamp(timestamp));
preStmt.executeUpdate();
preStmt.close();
//con.close();
}
private static void logNodeData(Connection con, int sim_no, int nodeId, int degree, double clusteringCoeff, long timeStamp) throws SQLException{
PreparedStatement preStmt = con.prepareStatement("INSERT INTO public.NODE_DATA (" + "SIM_NO,NODE_ID,DEGREE,CLUSTERING_COEFFICIENT,TIME_STAMP) VALUES (?,?,?,?,?)");
preStmt.setInt(1, sim_no);
preStmt.setInt(2, nodeId);
preStmt.setInt(3, degree);
preStmt.setDouble(4, clusteringCoeff);
preStmt.setTimestamp(5, new Timestamp(timeStamp));
preStmt.executeUpdate();
preStmt.close();
//con.close();
}
private static void logRelationData(Connection con, int sim_no, int nodeId1, int nodeId2, int distance, int tieStrength, double neighborhoodOverlap, long timeStamp) throws SQLException{
PreparedStatement preStmt = con.prepareStatement("INSERT INTO public.RELATION_DATA (" + "SIM_NO,NODE_ID1,NODE_ID2,DISTANCE,TIE_STRENGTH,NEIGHBORHOOD_OVERLAP,TIME_STAMP) VALUES (?,?,?,?,?,?,?)");
preStmt.setInt(1, sim_no);
preStmt.setInt(2, nodeId1);
preStmt.setInt(3, nodeId2);
preStmt.setInt(4, distance);
preStmt.setInt(5, tieStrength);
preStmt.setDouble(6, neighborhoodOverlap);
preStmt.setTimestamp(7, new Timestamp(timeStamp));
preStmt.executeUpdate();
preStmt.close();
//con.close();
}
public static long getTimeStamp(){
long t = System.currentTimeMillis();
//SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
//String timestamp = sdf.format(t);
return t; //timestamp;
}
}
最佳答案
我找到了解决我问题的方法:它的工作速度非常快:)
package io;
import db.PostgresConnector;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.sql.Connection;
import java.sql.SQLException;
import org.postgresql.copy.CopyManager;
import org.postgresql.core.BaseConnection;
public class DbLogger3 {
public static void main (String args[]) throws Exception {
try {
Connection conn = new PostgresConnector().getConnection();
CopyManager copyManager = new CopyManager((BaseConnection) conn);
String str = new String();
//add 5000 data sets: (important: \r\n after each record to set a line feed (postgres interpretes that as the end of each dataset)
for (int i=0; i<5000; i++){
str += "2;100;99;6.00;12.00;11.00;13;28.06.2016 00:08;28.06.2016 00:08"+"\r\n";
}
//transform the String into bytes:
byte[] bytes = str.getBytes();
//create ByteArrayInputStream object
ByteArrayInputStream input = new ByteArrayInputStream(bytes);
//insert into the database table (in my case: public.graph_data)
copyManager.copyIn("COPY public.graph_data FROM STDIN WITH DELIMITER ';'", input);
} catch (SQLException | IOException e) {
throw new Exception(e);
}
}
}
关于java - 使用JAVA中的CopyManager从Collection快速插入到Postgresql DB中,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/38133650/