我正在使用Vulkan在C++中开发体素引擎。大部分样板代码很大程度上基于vulkan-tutorial.com。我有一个看起来像这样的drawFrame函数...

void drawFrame(float dt) {
    vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);

    uint32_t imageIndex;
    VkResult result = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);

    updateUniformBuffer(imageIndex, dt);

    if (result == VK_ERROR_OUT_OF_DATE_KHR) {
        recreateSwapChain();
        return;
    } else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
        throw std::runtime_error("failed to acquire swap chain image!");
    }

    // Check if a previous frame is using this image (i.e.there is its fence to wait on)
    if (imagesInFlight[imageIndex] != VK_NULL_HANDLE) {
        vkWaitForFences(device, 1, &imagesInFlight[imageIndex], VK_TRUE, UINT64_MAX);
    }
    // Mark the image as now being in use by this frame
    imagesInFlight[imageIndex] = inFlightFences[currentFrame];

    VkSubmitInfo submitInfo{};
    submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

    VkSemaphore waitSemaphores[] = { imageAvailableSemaphores[currentFrame] };
    VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
    submitInfo.waitSemaphoreCount = 1;
    submitInfo.pWaitSemaphores = waitSemaphores;
    submitInfo.pWaitDstStageMask = waitStages;
    submitInfo.commandBufferCount = 1;
    submitInfo.pCommandBuffers = &commandBuffers[imageIndex];

    VkSemaphore signalSemaphores[] = { renderFinishedSemaphores[currentFrame] };
    submitInfo.signalSemaphoreCount = 1;
    submitInfo.pSignalSemaphores = signalSemaphores;

    vkResetFences(device, 1, &inFlightFences[currentFrame]);

    result = vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]);
    if (result != VK_SUCCESS) {
        throw std::runtime_error("failed to submit draw command buffer!");
    }

    VkPresentInfoKHR presentInfo{};
    presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
    presentInfo.waitSemaphoreCount = 1;
    presentInfo.pWaitSemaphores = signalSemaphores;

    VkSwapchainKHR swapChains[] = { swapChain };
    presentInfo.swapchainCount = 1;
    presentInfo.pSwapchains = swapChains;
    presentInfo.pImageIndices = &imageIndex;
    presentInfo.pResults = nullptr; // Optional

    result = vkQueuePresentKHR(presentQueue, &presentInfo);

    if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || framebufferResized) {
        framebufferResized = false;
        recreateSwapChain();
    } else if (result != VK_SUCCESS) {
        throw std::runtime_error("failed to present swap chain image!");
    }

    // Increment the frame. By using the modulo(%) operator, we ensure that the frame index loops around after every MAX_FRAMES_IN_FLIGHT enqueued frames.
    currentFrame = (currentFrame + 1) % config->maxFramesInFlight;
}
我通过这样的顶点...
void createVertexAndIndexBuffer() {
    for (size_t x = 0; x < 100; x++) {
        for (size_t y = 0; y < 4; y++) {
            for (size_t z = 0; z < 100; z++) {
                // for each block in the world vector
                auto blockId = world.getBlock(x, y, z);
                if (blockId == BlockId::Air) {
                    continue;
                }
                Vec3 blockPosition = { x, y, z };

                // get its data
                auto verts = blockdb.blockDataFor(blockId).getVertices();
                auto inds = blockdb.blockDataFor(blockId).getIndices();

                // account for the block position and store the new verts for later
                for (int i = 0; i < verts.size(); i++) {
                    Vertex v(verts[i]);
                    v.pos += blockPosition;
                    vertices.push_back(v);
                }

                // store the indices for later accounting for the offset into the verts vector
                for (int i = 0; i < inds.size(); i++) {
                    int ind(inds[i] + vertices.size());
                    indices.push_back(ind);
                }
            }
        }
    }

    // time to start creating the actual buffer
    VkDeviceSize vertexBufferSize = sizeof(vertices[0]) * vertices.size();

    VkBuffer vertexStagingBuffer;
    VkDeviceMemory vertexStagingBufferMemory;

    createBuffer(vertexBufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexStagingBuffer, vertexStagingBufferMemory);

    void* vertexData;
    vkMapMemory(device, vertexStagingBufferMemory, 0, vertexBufferSize, 0, &vertexData);
    memcpy(vertexData, vertices.data(), (size_t)vertexBufferSize);
    vkUnmapMemory(device, vertexStagingBufferMemory);

    createBuffer(vertexBufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory);

    // use copyBuffer() to move the vertex data to the device local buffer
    copyBuffer(vertexStagingBuffer, vertexBuffer, vertexBufferSize);

    // After copying the data from the staging buffer to the device buffer, we should clean up the staging buffer since it is no longer needed.
    vkDestroyBuffer(device, vertexStagingBuffer, nullptr);
    vkFreeMemory(device, vertexStagingBufferMemory, nullptr);


    // and do the same for the index buffer
    VkDeviceSize indexBufferSize = sizeof(indices[0]) * indices.size();

    VkBuffer indexStagingBuffer;
    VkDeviceMemory indexStagingBufferMemory;
    createBuffer(indexBufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, indexStagingBuffer, indexStagingBufferMemory);

    void* indexData;
    vkMapMemory(device, indexStagingBufferMemory, 0, indexBufferSize, 0, &indexData);
    memcpy(indexData, indices.data(), (size_t)indexBufferSize);
    vkUnmapMemory(device, indexStagingBufferMemory);

    createBuffer(indexBufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory);

    copyBuffer(indexStagingBuffer, indexBuffer, indexBufferSize);

    vkDestroyBuffer(device, indexStagingBuffer, nullptr);
    vkFreeMemory(device, indexStagingBufferMemory, nullptr);
}
一切都可以正常工作,但是我需要能够按块而不是按块进行渲染,以实现块几何优化。这是我的chunk.h和chunk.cpp ...
#pragma once
#include "Layer.h"

class Chunk {
public:
    Chunk() = default;
    Chunk(World* _world, Vec2XZ pos);
    ~Chunk() {}

    BlockId getBlock(int x, int y, int z);
    bool setBlock(BlockId id, int x, int y, int z);
    bool isBlockOutOfBounds(int x, int y, int z);
    void generateVerticesAndIndices();
    void load();

    std::array<Layer, CHUNK_HEIGHT> layers;
    const Vec2XZ position;
    const World* world;
    bool isLoaded = false;
    std::vector<Vertex> vertices;
    std::vector<uint32_t> indices;
private:
};
#pragma once
#include "Chunk.h"

Chunk::Chunk(World* _world, Vec2XZ pos) :
    position(pos),
    world(_world) {
}

BlockId Chunk::getBlock(int x, int y, int z) {
    if (isBlockOutOfBounds(x, y, z)) {
        return BlockId::Air;
    }

    return layers[y].getBlock(x, z);
}

bool Chunk::setBlock(BlockId id, int x, int y, int z) {
    if (!isBlockOutOfBounds(x, y, z)) {
        if (layers[y].setBlock(id, x, z)) {
            return true;
        }
    }

    return false;
}

bool Chunk::isBlockOutOfBounds(int x, int y, int z) {
    if (x >= CHUNK_WIDTH)
        return true;
    if (z >= CHUNK_WIDTH)
        return true;

    if (x < 0)
        return true;
    if (y < 0)
        return true;
    if (z < 0)
        return true;

    if (y >= CHUNK_HEIGHT) {
        return true;
    }

    return false;
}

void Chunk::generateVerticesAndIndices() {
    vertices.clear();
    indices.clear();
    for (int y = 0; y < CHUNK_HEIGHT; y++) {
        for (int x = 0; x < CHUNK_WIDTH; x++) {
            for (int z = 0; z < CHUNK_WIDTH; z++) {
                // for each block in this chunk
                auto blockId = getBlock(x, y, z);

                if (blockId == BlockId::Air) {
                    continue; // dont render air
                }

                // infer the block position using its coordinates
                Vec3 blockPosition = { x, y, z };

                // get its data
                auto verts = world->blockdb->blockDataFor(blockId).getVertices();
                auto inds = world->blockdb->blockDataFor(blockId).getIndices();

                // account for the block position and store the new verts
                for (int i = 0; i < verts.size(); i++) {
                    Vertex v(verts[i]);
                    v.pos += blockPosition;
                    vertices.push_back(v);
                }

                // store the indices for later accounting for the offset into the verts vector
                for (int i = 0; i < inds.size(); i++) {
                    int ind(inds[i] + vertices.size());
                    indices.push_back(ind);
                }
            }
        }
    }
}

void Chunk::load() {
    if (isLoaded) {
        return;
    }

    // todo: actual terrain generation
    for (int y = 0; y < 4; y++) {
        for (int x = 0; x < CHUNK_WIDTH; x++) {
            for (int z = 0; z < CHUNK_WIDTH; z++) {
                setBlock(BlockId::Grass, x, y, z);
            }
        }
    }

    isLoaded = true;
}


因此,我基本上已经将createVertexAndIndexBuffer()的顶部迁移到了块类。然后在createVertexAndIndexBuffer()中,这样遍历渲染距离内播放器周围的块...
 void createVertexAndIndexBuffer() {
    // set bounds of how far out to render based on what chunk the player is in
    Vec2XZ playerChunkCoords = { floor(player.position.x) / CHUNK_WIDTH, floor(player.position.z) / CHUNK_WIDTH };

    Vec2XZ lowChunkXZ = { playerChunkCoords.x - renderDistance, playerChunkCoords.z - renderDistance };
    Vec2XZ highChunkXZ = { playerChunkCoords.x + renderDistance, playerChunkCoords.z + renderDistance };

    // for each chunk around the player within render distance
    for (int x = lowChunkXZ.x; x < highChunkXZ.x; x++) {
        for (int z = lowChunkXZ.z; z < highChunkXZ.z; z++) {
            // get the chunk
            Chunk* chunk = &world.getChunk(x, z);

            // load it if it isnt already
            if (!chunk->isLoaded) {
                chunk->load();
            }

            // generate its geometry if it doesnt already exist
            if (chunk->vertices.size() == 0 || chunk->indices.size() == 0) {
                chunk->generateVerticesAndIndices();
            }

            auto verts = chunk->vertices;
            auto inds = chunk->indices;

            // account for the chunk position and store the new verts for later
            for (int i = 0; i < verts.size(); i++) {
                Vertex v(verts[i]);
                v.pos.x += x * CHUNK_WIDTH;
                v.pos.z += z * CHUNK_WIDTH;
                vertices.push_back(v);
            }

            // store the indices for later accounting for the offset into the verts vector
            for (int i = 0; i < inds.size(); i++) {
                int ind(inds[i] + vertices.size());
                indices.push_back(ind);
            }
        }
    }

    // time to start creating the actual buffer
    VkDeviceSize vertexBufferSize = sizeof(vertices[0]) * vertices.size();

    VkBuffer vertexStagingBuffer;
    VkDeviceMemory vertexStagingBufferMemory;

    createBuffer(vertexBufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexStagingBuffer, vertexStagingBufferMemory);

    void* vertexData;
    vkMapMemory(device, vertexStagingBufferMemory, 0, vertexBufferSize, 0, &vertexData);
    memcpy(vertexData, vertices.data(), (size_t)vertexBufferSize);
    vkUnmapMemory(device, vertexStagingBufferMemory);

    createBuffer(vertexBufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory);

    // use copyBuffer() to move the vertex data to the device local buffer
    copyBuffer(vertexStagingBuffer, vertexBuffer, vertexBufferSize);

    // After copying the data from the staging buffer to the device buffer, we should clean up the staging buffer since it is no longer needed.
    vkDestroyBuffer(device, vertexStagingBuffer, nullptr);
    vkFreeMemory(device, vertexStagingBufferMemory, nullptr);


    // and do the same for the index buffer
    VkDeviceSize indexBufferSize = sizeof(indices[0]) * indices.size();

    VkBuffer indexStagingBuffer;
    VkDeviceMemory indexStagingBufferMemory;
    createBuffer(indexBufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, indexStagingBuffer, indexStagingBufferMemory);

    void* indexData;
    vkMapMemory(device, indexStagingBufferMemory, 0, indexBufferSize, 0, &indexData);
    memcpy(indexData, indices.data(), (size_t)indexBufferSize);
    vkUnmapMemory(device, indexStagingBufferMemory);

    createBuffer(indexBufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory);

    copyBuffer(indexStagingBuffer, indexBuffer, indexBufferSize);

    vkDestroyBuffer(device, indexStagingBuffer, nullptr);
    vkFreeMemory(device, indexStagingBufferMemory, nullptr);
}
使用此代码,引擎可以正常启动,但屏幕保持白色,然后在drawFrame()中对vkQueueSubmit()进行几次调用后,vkQueueSubmit()返回VK_ERROR_DEVICE_LOST而不是VK_SUCCESS,然后应用程序抛出相应的运行时错误,打印相应的调试信息“无法提交绘制命令缓冲区!”,等待我按一个键,然后最后以EXIT_FAILURE终止。
为什么从块推顶可以直接工作,而从块顶推却不能呢?我已经检查了Vulkan规范并进行了很多谷歌搜索,但是我对导致该错误的原因一无所知。我想知道如何修复它,然后修复引擎。

最佳答案

我分配的索引不正确,它被图形驱动程序捕获。存在比顶点 vector 大的索引。

关于c++ - 是什么原因导致调用vkQueueSubmit时出现VK_ERROR_DEVICE_LOST?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/63092926/

10-12 23:56