这应该很简单,但我发现最接近的是这篇文章:
pandas: Filling missing values within a group ,我仍然无法解决我的问题....

假设我有以下数据框

df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3], 'name': ['A','A', 'B','B','B','B', 'C','C','C']})

  name  value
0    A      1
1    A    NaN
2    B    NaN
3    B      2
4    B      3
5    B      1
6    C      3
7    C    NaN
8    C      3

我想在每个“名称”组中用平均值填充“NaN”,即
      name  value
0    A      1
1    A      1
2    B      2
3    B      2
4    B      3
5    B      1
6    C      3
7    C      3
8    C      3

我不知道该去哪里:
grouped = df.groupby('name').mean()

谢谢一堆。

最佳答案

一种方法是使用 transform :

>>> df
  name  value
0    A      1
1    A    NaN
2    B    NaN
3    B      2
4    B      3
5    B      1
6    C      3
7    C    NaN
8    C      3
>>> df["value"] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
>>> df
  name  value
0    A      1
1    A      1
2    B      2
3    B      2
4    B      3
5    B      1
6    C      3
7    C      3
8    C      3

关于python - Pandas:在每组中按平均值填充缺失值,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/19966018/

10-12 23:28