我正试图按照DeepMind关于Q-learning的论文进行游戏突破,到目前为止,性能并没有提高,也就是说,它根本没有学到任何东西。我只是在运行游戏,保存一些数据和训练,然后再运行游戏,而不是体验重播。我已经发表了一些评论来解释我的实现,任何帮助都是非常感谢的。另外,我可能遗漏了一些要点,请看一下。
我发送4帧作为输入和一个热键按下矩阵乘以奖励的按键。同时,我也在尝试突破威慑-v0,正如在论文中提到的
import gym
import tflearn
import numpy as np
import cv2
from collections import deque
from tflearn.layers.estimator import regression
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d
game = "BreakoutDeterministic-v4"
env = gym.make(game)
env.reset()
LR = 1e-3
num_games = 10 # arbitrary number, not final
num_frames = 500
possible_actions = env.action_space.n
accepted_score = 2
MODEL_NAME = 'data/Model_{}'
gamma = 0.9
epsilon = 0.7
generations = 30 # arbitrary number, not final
height = 84
width = 84
# instead of using experience replay, i'm simply calling this function in generations to generate training data
def play4data(gen):
training_data = []
for i in range(num_games):
score = 0
data = []
prev_observation = []
env.reset()
done = False
d = deque()
while not done:
# env.render()
# if it's 0th generation, model hasn't been trained yet, so can't call predict funtion
# or if i want to take a random action based on some fixed epsilon value
# or if it's in later gens , but doesn't have 4 frames yet , to send to model
if gen == 0 or len(prev_observation)==0 or np.random.rand() <= epsilon or len(d) < 4:
theta = np.random.randn(possible_actions)
else:
theta = model.predict(np.array(d).reshape(-1, 4, height, width))[0]
# action is a single value, namely max from an output like [0.00147357 0.00367402 0.00365852 0.00317618]
action = np.argmax(theta)
# action = env.action_space.sample()
# take an action and record the results
observation, reward, done, info = env.step(action)
# since observation is 210 x 160 pixel image, resizing to 84 x 84
observation = cv2.resize(observation, (height, width))
# converting image to grayscale
observation = cv2.cvtColor(observation, cv2.COLOR_RGB2GRAY)
# d is a queue of 4 frames that i pass as an input to the model
d.append(observation)
if len(d) > 4:
d.popleft()
# for gen 0 , since model hasn't been trained yet, Q_sa is set to zeros or random
# or i dont yet have 4 frames to call predict
if gen == 0 or len(d) < 4:
Q_sa = np.zeros(possible_actions)
else:
Q_sa = model.predict(np.array(d).reshape(-1, 4, height, width))[0]
# this one is just total score after each game
score += reward
if not done:
Q = reward + gamma*np.amax(Q_sa)
else:
Q = reward
# instead of mask, i just used list comparison to multiply with Q values
# theta is one-hot after this, like [0. 0. 0. 0.00293484]
theta = (theta == np.amax(theta)) * 1 * Q
# only appending those actions, for which some reward was generated
# otherwise data-set becomes mostly zeros and model is 99 % accurate by just predicting zeros
if len(prev_observation) > 0 and len(d) == 4 np.sum(theta) > 0:
data.append([d, theta])
prev_observation = observation
if done:
break
print('gen {1} game {0}: '.format(i, gen) + str(score))
# only taking those games for which total score at the end of game was above accpetable score
if score >= accepted_score:
for d in data:
training_data.append(d)
env.reset()
return training_data
# exact model described in DeepMind paper, just added a layer to end for 18 to 4
def simple_model(width, height, num_frames, lr, output=9, model_name='intelAI.model'):
network = input_data(shape=[None, num_frames, width, height], name='input')
conv1 = conv_2d(network, 8, 32,strides=4, activation='relu', name='conv1')
conv2 = conv_2d(conv1, 4, 64, strides=2, activation='relu', name='conv2')
conv3 = conv_2d(conv2, 3, 64, strides=1, activation='relu', name='conv3')
fc4 = fully_connected(conv3, 512, activation='relu')
fc5 = fully_connected(fc4, 18, activation='relu')
fc6 = fully_connected(fc5, output, activation='relu')
network = regression(fc6, optimizer='adam',
loss='mean_square',
learning_rate=lr, name='targets')
model = tflearn.DNN(network,
max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log')
return model
# defining/ declaring the model
model = simple_model(width, height, 4, LR, possible_actions)
# this function is responsible for training the model
def train2play(training_data):
X = np.array([i[0] for i in training_data]).reshape(-1, 4, height, width)
Y = [i[1] for i in training_data]
# X is the queue of 4 frames
model.fit({'input': X}, {'targets': Y}, n_epoch=5, snapshot_step=500, show_metric=True, run_id='openai_learning')
# repeating the whole process in terms of generations
# training again and again after playing for set number of games
for gen in range(generations):
training_data = play4data(gen)
np.random.shuffle(training_data)
train2play(training_data)
model.save(MODEL_NAME.format(game))
最佳答案
我没有详细检查每一行代码,因此可能遗漏了一些内容,但以下是一些值得研究的内容:
你训练了多少帧(例如,多少次呼叫)?我不知道DeepMind的DQN需要多少时间来完成这个特定的游戏,但是很多atari游戏确实需要数百万步才能在性能上得到显著的提高。仅仅从少量的训练就很难判断它是否按预期工作。
除非我错过了,否则你看起来不会随着时间而腐烂。起始值step()
是可以的(或者我认为在开始时有更高的值更为常见),但是随着时间的推移,它确实应该降低,以类似epsilon
或0.7
的值结束。如果你把它保持在这么高的水平,它将开始限制你能学到多少。
你提到你有意不使用经验回放,但经验回放在DQN论文中被描述为稳定学习的一个重要组成部分。其重要性的一个假设是,它消除/减少了经验样本之间的相关性,这对于神经网络的训练是至关重要的(如果你给你的网络提供的所有样本看起来都一样,因为它们都是最近从同一策略生成的,那么它将无法获得足够多的训练数据)。
我看不到你在使用目标网络(用于计算0.1
学习目标的网络的单独副本,它只是偶尔通过将学习网络的参数复制到其中来更新)。与经验回放一样,这在DQN论文中被描述为稳定学习过程的一个重要组成部分。我认为没有它,你不可能合理地期望一个稳定的学习过程。
关于python - 难以实现Breakout DeepMind的模型,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/49409790/