原始表如下:

ID Name Sex Weight Date
1  Bill M   68.1   2015-01-01
2  Mary F   45.2   2015-01-01
3  Gary M   89.2   2015-01-01
1  Bill M   68.3   2015-01-02
2  Mary F   45.3   2015-01-02
3  Gary M   89.1   2015-01-02




所需的输出是:

ID Name Sex 2015-01-01 2015-01-02
1  Bill M   68.1   68.3
2  Mary F   45.2   45.3
3  Gary M   89.2   89.1




是否有任何快速方法来获取所需的数据帧?
我试图创建一个新的数据框并使用ret.loc [i] = row_list逐行追加,但是当数据集变大时,它太慢了。

最佳答案

您可以使用pivot_table

print df.pivot_table(index=['ID', 'Name','Sex'], columns='Date', values='Weight')
Date         2015-01-01  2015-01-02
ID Name Sex
1  Bill M          68.1        68.3
2  Mary F          45.2        45.3
3  Gary M          89.2        89.1


如果需要reset_index,请使用strftime

df = df.pivot_table(index=['ID', 'Name','Sex'], columns='Date', values='Weight')
df.columns = df.columns.strftime('%Y-%m-%d')

#if you need sorting columns
df= df.sort_index(axis = 1)
df = df.reset_index()

print df
   ID  Name Sex  2015-01-01  2015-01-02
0   1  Bill   M        68.1        68.3
1   2  Mary   F        45.2        45.3
2   3  Gary   M        89.2        89.1


要么:

print df.pivot_table(index=['ID', 'Name','Sex'], columns='Date', values='Weight').reset_index()
Date  ID  Name Sex  2015-01-01 00:00:00  2015-01-02 00:00:00
0      1  Bill   M                 68.1                 68.3
1      2  Mary   F                 45.2                 45.3
2      3  Gary   M                 89.2                 89.1

关于python - Python和Pandas:匹配和转置,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/35209896/

10-12 22:57