我正在学习深度强化学习
 框架Chainer。

我遵循了一个教程,并获得了以下代码:

def train_dddqn(env):

    class Q_Network(chainer.Chain):

        def __init__(self, input_size, hidden_size, output_size):
            super(Q_Network, self).__init__(
                fc1=L.Linear(input_size, hidden_size),
                fc2=L.Linear(hidden_size, hidden_size),
                fc3=L.Linear(hidden_size, hidden_size // 2),
                fc4=L.Linear(hidden_size, hidden_size // 2),
                state_value=L.Linear(hidden_size // 2, 1),
                advantage_value=L.Linear(hidden_size // 2, output_size)
            )
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size

        def __call__(self, x):
            h = F.relu(self.fc1(x))
            h = F.relu(self.fc2(h))
            hs = F.relu(self.fc3(h))
            ha = F.relu(self.fc4(h))
            state_value = self.state_value(hs)
            advantage_value = self.advantage_value(ha)
            advantage_mean = (F.sum(advantage_value, axis=1) / float(self.output_size)).reshape(-1, 1)
            q_value = F.concat([state_value for _ in range(self.output_size)], axis=1) + (
                    advantage_value - F.concat([advantage_mean for _ in range(self.output_size)], axis=1))
            return q_value

        def reset(self):
            self.cleargrads()


    Q = Q_Network(input_size=env.history_t + 1, hidden_size=100, output_size=3)
    Q_ast = copy.deepcopy(Q)
    optimizer = chainer.optimizers.Adam()
    optimizer.setup(Q)

    epoch_num = 50
    step_max = len(env.data) - 1
    memory_size = 200
    batch_size = 50
    epsilon = 1.0
    epsilon_decrease = 1e-3
    epsilon_min = 0.1
    start_reduce_epsilon = 200
    train_freq = 10
    update_q_freq = 20
    gamma = 0.97
    show_log_freq = 5

    memory = []
    total_step = 0
    total_rewards = []
    total_losses = []

    start = time.time()
    for epoch in range(epoch_num):

        pobs = env.reset()
        step = 0
        done = False
        total_reward = 0
        total_loss = 0

        while not done and step < step_max:

            # select act
            pact = np.random.randint(3)
            if np.random.rand() > epsilon:
                pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
                pact = np.argmax(pact.data)

            # act
            obs, reward, done = env.step(pact)

            # add memory
            memory.append((pobs, pact, reward, obs, done))
            if len(memory) > memory_size:
                memory.pop(0)

            # train or update q
            if len(memory) == memory_size:
                if total_step % train_freq == 0:
                    shuffled_memory = np.random.permutation(memory)
                    memory_idx = range(len(shuffled_memory))
                    for i in memory_idx[::batch_size]:
                        batch = np.array(shuffled_memory[i:i + batch_size])
                        b_pobs = np.array(batch[:, 0].tolist(), dtype=np.float32).reshape(batch_size, -1)
                        b_pact = np.array(batch[:, 1].tolist(), dtype=np.int32)
                        b_reward = np.array(batch[:, 2].tolist(), dtype=np.int32)
                        b_obs = np.array(batch[:, 3].tolist(), dtype=np.float32).reshape(batch_size, -1)
                        b_done = np.array(batch[:, 4].tolist(), dtype=np.bool)

                        q = Q(b_pobs)

                        indices = np.argmax(q.data, axis=1)
                        maxqs = Q_ast(b_obs).data
                        target = copy.deepcopy(q.data)
                        for j in range(batch_size):
                        Q.reset()
                        loss = F.mean_squared_error(q, target)
                        total_loss += loss.data
                        loss.backward()
                        optimizer.update()

                if total_step % update_q_freq == 0:
                    Q_ast = copy.deepcopy(Q)

            # epsilon
            if epsilon > epsilon_min and total_step > start_reduce_epsilon:
                epsilon -= epsilon_decrease

            # next step
            total_reward += reward
            pobs = obs
            step += 1
            total_step += 1

        total_rewards.append(total_reward)
        total_losses.append(total_loss)

        if (epoch + 1) % show_log_freq == 0:
            log_reward = sum(total_rewards[((epoch + 1) - show_log_freq):]) / show_log_freq
            log_loss = sum(total_losses[((epoch + 1) - show_log_freq):]) / show_log_freq
            elapsed_time = time.time() - start
            print('\t'.join(map(str, [epoch + 1, epsilon, total_step, log_reward, log_loss, elapsed_time])))
            start = time.time()

    return Q, total_losses, total_rewards


Q, total_losses, total_rewards = train_dddqn(Environment1(train))


我的问题是如何保存和加载经过良好训练的模型?我知道Kreas具有一些功能,例如:model.save和load_model。

那么,此Chainer代码需要什么指定代码?

最佳答案

您可以使用serializer模块保存/加载链接器模型的参数(Chain类)。

from chainer import serializers

Q = Q_Network(input_size=env.history_t + 1, hidden_size=100, output_size=3)
Q_ast = Q_Network(input_size=env.history_t + 1, hidden_size=100, output_size=3)

# --- train Q here... ---

# copy Q parameter into Q_ast by saving Q's parameter and load to Q_ast
serializers.save_npz('my.model', Q)
serializers.load_npz('my.model', Q_ast)


有关详细信息,请参见官方文档:


http://docs.chainer.org/en/stable/guides/serializers.html


另外,您可以参考chainerrl,这是用于强化学习的链接器库。


https://github.com/chainer/chainerrl


chainerrl具有实用程序功能copy_param,可将参数从网络source_link复制到target_link


https://github.com/chainer/chainerrl/blob/master/chainerrl/misc/copy_param.py#L12-L30

关于machine-learning - Chainer如何保存和加载DQN模型,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54053848/

10-12 22:53