在Python的标准max
函数中,我可以传入key
参数:
s = numpy.array(['one','two','three'])
max(s) # 'two' (lexicographically last)
max(s, key=len) # 'three' (longest string)
对于较大的(多维)数组,我们不能再使用
max
,但是可以使用numpy.amax
...,不幸的是,它没有提供key
参数。t = numpy.array([['one','two','three'],
['four','five','six']],
dtype='object')
numpy.amax(t) # 'two` (max of the flat array)
numpy.amax(t, axis=1) # array([two, six], dtype=object) (max of first row, followed by max of second row)
我想要做的是:
amax2(t, key=len) # 'three'
amax2(t, key=len, axis=1) # array([three, four], dtype=object)
有内置的方法可以做到这一点吗?
注意:第一次尝试写此问题时,我找不到
amax
working in this toy example! 最佳答案
这是一种非内置方式(使用out
时缺少features of keepdim
的amax
和key
参数),这似乎很长:
def amax2(x, *args, **kwargs):
if 'key' not in kwargs:
return numpy.amax(x,*args,**kwargs)
else:
key = kwargs.pop('key') # e.g. len, pop so no TypeError: unexpected keyword
x_key = numpy.vectorize(key)(x) # apply key to x element-wise
axis = kwargs.get('axis') # either None or axis is set in kwargs
if len(args)>=2: # axis is set in args
axis = args[1]
# The following is kept verbose, but could be made more efficient/shorter
if axis is None: # max of flattened
max_flat_index = numpy.argmax(x_key, axis=axis)
max_tuple_index = numpy.unravel_index(max_flat_index, x.shape)
return x[max_tuple_index]
elif axis == 0: # max in each column
max_indices = numpy.argmax(x_key, axis=axis)
return numpy.array(
[ x[max_i, i] # reorder for col
for i, max_i in enumerate(max_indices) ],
dtype=x.dtype)
elif axis == 1: # max in each row
max_indices = numpy.argmax(x_key, axis=axis)
return numpy.array(
[ x[i, max_i]
for i, max_i in enumerate(max_indices) ],
dtype=x.dtype)
此功能的思想从@PeterSobot's answer的第二部分扩展到我之前的问题。
关于python - numpy.amax中的键,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/12655525/