from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
from imutils.video import VideoStream
import numpy as np
import argparse
import imutils
import time
import cv2
import os
def detect_and_predict_mask(frame, faceNet, maskNet):
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300),
(104.0, 177.0, 123.0))
faceNet.setInput(blob)
detections = faceNet.forward()
faces = []
locs = []
preds = []
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > args["confidence"]:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
face = frame[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
faces.append(face)
locs.append((startX, startY, endX, endY))
if len(faces) > 0:
preds = maskNet.predict(faces)
return (locs, preds)
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--face", type=str,
default="face_detector",
help="path to face detector model directory")
ap.add_argument("-m", "--model", type=str,
default="mask_detector.model",
help="path to trained face mask detector model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
print("[INFO] loading face detector model...")
prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"])
weightsPath = os.path.sep.join([args["face"],
"res10_300x300_ssd_iter_140000.caffemodel"])
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)
print("[INFO] loading face mask detector model...")
maskNet = load_model(args["model"])
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
while True:
frame = vs.read()
frame = imutils.resize(frame, width=400)
(locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet)
for (box, pred) in zip(locs, preds):
(startX, startY, endX, endY) = box
(mask, withoutMask) = pred
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
cv2.putText(frame, label, (startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
cv2.destroyAllWindows()
vs.stop()
我需要导入任何模块吗还是全部正确导入。
我不调试
我一次重新格式化文件。
我已经获得了所有需要的xml和jpg文件。
我已经导入了所有需要的模块...
下面是错误
您能帮我吗,我是OpenCV的新手,遇到了类似这样的复杂错误
感谢所有Stackoverflow社区的帮助:)
C:\Users\Toshiba\Desktop\python_temelleri\venv\Scripts\python.exe C:/Users/Toshiba/Desktop/python_temelleri/detect_mask_video.py
2020-08-28 16:47:05.729423: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found
2020-08-28 16:47:05.730054: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
Traceback (most recent call last):
File "C:/Users/Toshiba/Desktop/python_temelleri/detect_mask_video.py", line 60, in <module>
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)
cv2.error: OpenCV(4.4.0) C:\Users\appveyor\AppData\Local\Temp\1\pip-req-build-2b5g8ysb\opencv\modules\dnn\src\caffe\caffe_io.cpp:1121: error: (-2:Unspecified error) FAILED: fs.is_open(). Can't open "face_detector\deploy.prototxt" in function 'cv::dnn::ReadProtoFromTextFile'
[INFO] loading face detector model...
Process finished with exit code 1
最佳答案
您要么不提供模型,要么模型的路径不正确。打印prototxtPath和weightsPath的值,以检查是否提供了正确的模型路径。
关于python - 我正在使用OpenCV制作 mask 的面部检测应用程序,该应用程序可检测戴口罩的面部,但出现错误,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/63635225/