我正在尝试从可能出现在“退出”列中的两个值中预测一个。我有干净的数据(大约20列和4k行包含有关“性别”,“年龄”等客户的典型信息)。在培训数据集中,约20%的客户被评为“ 1”。我制作了两个模型-svm和随机森林-但都预测测试数据集大多为“ 0”(几乎每次)。召回两个模型为0。
我在代码中认为可以犯一些愚蠢的错误。有什么想法为什么在80%的准确度下召回率如此之低?
def ml_model():
print('sklearn: %s' % sklearn.__version__)
df = pd.read_csv('clean_data.csv')
df.head()
feat = df.drop(columns=['target'], axis=1)
label = df["target"]
x_train, x_test, y_train, y_test = train_test_split(feat, label, test_size=0.3)
sc_x = StandardScaler()
x_train = sc_x.fit_transform(x_train)
# SVC method
support_vector_classifier = SVC(probability=True)
# Grid search
rand_list = {"C": stats.uniform(0.1, 10),
"gamma": stats.uniform(0.1, 1)}
auc = make_scorer(roc_auc_score)
rand_search_svc = RandomizedSearchCV(support_vector_classifier, param_distributions=rand_list, n_iter=100, n_jobs=4, cv=3, random_state=42,
scoring=auc)
rand_search_svc.fit(x_train, y_train)
support_vector_classifier = rand_search_svc.best_estimator_
cross_val_svc = cross_val_score(estimator=support_vector_classifier, X=x_train, y=y_train, cv=10, n_jobs=-1)
print("Cross Validation Accuracy for SVM: ", round(cross_val_svc.mean() * 100, 2), "%")
predicted_y = support_vector_classifier.predict(x_test)
tn, fp, fn, tp = confusion_matrix(y_test, predicted_y).ravel()
precision_score = tp / (tp + fp)
recall_score = tp / (tp + fn)
print("Recall score SVC: ", recall_score)
# Random forests
random_forest_classifier = RandomForestClassifier()
# Grid search
param_dist = {"max_depth": [3, None],
"max_features": sp_randint(1, 11),
"min_samples_split": sp_randint(2, 11),
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]}
rand_search_rf = RandomizedSearchCV(random_forest_classifier, param_distributions=param_dist,
n_iter=100, cv=5, iid=False)
rand_search_rf.fit(x_train, y_train)
random_forest_classifier = rand_search_rf.best_estimator_
cross_val_rfc = cross_val_score(estimator=random_forest_classifier, X=x_train, y=y_train, cv=10, n_jobs=-1)
print("Cross Validation Accuracy for RF: ", round(cross_val_rfc.mean() * 100, 2), "%")
predicted_y = random_forest_classifier.predict(x_test)
tn, fp, fn, tp = confusion_matrix(y_test, predicted_y).ravel()
precision_score = tp / (tp + fp)
recall_score = tp / (tp + fn)
print("Recall score RF: ", recall_score)
new_data = pd.read_csv('new_data.csv')
new_data = cleaning_data_to_predict(new_data)
if round(cross_val_svc.mean() * 100, 2) > round(cross_val_rfc.mean() * 100, 2):
predictions = support_vector_classifier.predict(new_data)
predictions_proba = support_vector_classifier.predict_proba(new_data)
else:
predictions = random_forest_classifier.predict(new_data)
predictions_proba = random_forest_classifier.predict_proba(new_data)
f = open("output.txt", "w+")
for i in range(len(predictions.tolist())):
print("id: ", i, "probability: ", predictions_proba.tolist()[i][1], "exit: ", predictions.tolist()[i], file=open("output.txt", "a"))
最佳答案
如果我没有错过,您忘记了扩展测试集。
因此,您还需要扩展它。请注意,您应该只对其进行转换,而不再适合它。见下文。
x_test = sc_x.transform(x_test)
关于python - 支持率= 0的SVM和随机森林,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/58826840/