我刚刚开始使用Tensorflow,想知道下面的代码是否是计算累积滚动平均值的正确方法
import tensorflow as tf
import numpy as np
x = tf.Variable(0, name = "x")
x_pld = tf.placeholder(tf.int32)
update_x = tf.assign(x, x_pld)
curr_avg = tf.Variable(tf.constant(0.), name="curr_avg")
avg_pld = tf.placeholder("float")
update_avg = tf.assign(curr_avg, avg_pld)
# Initalize
init_op = tf.initialize_all_variables()
with tf.Session() as session:
session.run(init_op)
for i in range(5):
temp_avg = session.run(curr_avg)
session.run(update_x, feed_dict={x_pld: np.random.randint(1000)})
new_x = session.run(x)
print(new_x)
session.run(update_avg, feed_dict={avg_pld: ((temp_avg * (i)) + new_x)/(i+1)})
print(session.run(curr_avg))
最佳答案
import numpy as np
import tensorflow as tf
# Set Variables
# only need single placeholder because only feeding in one value to graph
next_val = tf.placeholder(shape=(), dtype=tf.float32)
cumulative = tf.Variable(0, dtype=tf.float32)
divisor = tf.Variable(0, dtype=tf.float32)
#Calculations
cumulative = cumulative.assign_add(next_val)
divisor = divisor.assign_add(1)
avg = tf.div(cumulative, divisor)
with tf.Session() as session:
tf.initialize_all_variables().run() # run initialization of variables in graph
for i in range(5):
new_val = np.random.randint(1000)
# run graph ops once, and return the result of avg
curr_avg = session.run([avg], feed_dict={next_val: new_val})
print "next value added: {}".format(new_val) # allows you to verify output
print "rolling average: {}".format(curr_avg)
关于python - Tensorflow基础-计算累积移动平均值,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/37487848/