有没有一种快速的方法来获取argwhere的输出在where格式的输出中?
让我向您展示我在用一些代码做什么:
In [123]: filter = np.where(scores[:,:,:,4,:] > 21000)
In [124]: filter
Out[124]:
(array([ 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 23, 23, 23, 23, 23]),
array([13, 13, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5]),
array([0, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2]),
array([44, 44, 0, 1, 2, 3, 6, 8, 12, 14, 22, 31, 58, 76, 82, 41]))
In [125]: filter2 = np.argwhere(scores[:,:,:,4,:] > 21000)
In [126]: filter2
Out[126]:
array([[ 2, 13, 0, 44],
[ 2, 13, 1, 44],
[ 4, 4, 3, 0],
[ 4, 4, 3, 1],
[ 4, 4, 3, 2],
[ 4, 4, 3, 3],
[ 4, 4, 3, 6],
[ 4, 4, 3, 8],
[ 4, 4, 3, 12],
[ 4, 4, 3, 14],
[ 4, 4, 3, 22],
[23, 4, 2, 31],
[23, 4, 2, 58],
[23, 4, 2, 76],
[23, 4, 2, 82],
[23, 5, 2, 41]])
In [150]: scores[:,:,:,4,:][filter]
Out[150]:
array([ 21344., 21344., 24672., 24672., 24672., 24672., 25232.,
25232., 25232., 25232., 24672., 21152., 21152., 21152.,
21152., 21344.], dtype=float16)
In [129]: filter2[np.argsort(scores[:,:,:,4,:][filter])]
Out[129]:
array([[23, 4, 2, 31],
[23, 4, 2, 58],
[23, 4, 2, 76],
[23, 4, 2, 82],
[ 2, 13, 0, 44],
[ 2, 13, 1, 44],
[23, 5, 2, 41],
[ 4, 4, 3, 0],
[ 4, 4, 3, 1],
[ 4, 4, 3, 2],
[ 4, 4, 3, 3],
[ 4, 4, 3, 22],
[ 4, 4, 3, 6],
[ 4, 4, 3, 8],
[ 4, 4, 3, 12],
[ 4, 4, 3, 14]])
129
是我想要的输出,因此我的代码可以运行,但是我试图使其尽可能快。我应该与filter2
一起获得np.array(filter).transpose()
吗?还有更好的东西吗?编辑,尝试更清楚地表达它:我想要一个索引列表,这些索引按应用于数组时返回的值排序。为此,我需要np.where和np.argwhere的输出,我想知道从一个输出切换到另一个输出的最快方法是什么,或者是否还有另一种获得我的结果的方法。
最佳答案
查看argwhere
的代码:
return transpose(asanyarray(a).nonzero())
而
where
文档说:其中(条件,[x,y])
如果仅给出
condition
,则返回condition.nonzero()
。实际上,两者都使用
a.nonzero()
。一个按原样使用它,另一个对它进行转置。In [933]: x=np.zeros((2,3),int)
In [934]: x[[0,1,0],[0,1,2]]=1
In [935]: x
Out[935]:
array([[1, 0, 1],
[0, 1, 0]])
In [936]: x.nonzero()
Out[936]: (array([0, 0, 1], dtype=int32), array([0, 2, 1], dtype=int32))
In [937]: np.where(x) # same as nonzero()
Out[937]: (array([0, 0, 1], dtype=int32), array([0, 2, 1], dtype=int32))
In [938]: np.argwhere(x)
Out[938]:
array([[0, 0],
[0, 2],
[1, 1]], dtype=int32)
In [939]: np.argwhere(x).T
Out[939]:
array([[0, 0, 1],
[0, 2, 1]], dtype=int32)
argwhere().T
与where
相同,只是在2d中而不是在元组中。np.transpose(filter)
和np.array(filter).T
看起来同样不错。对于大型数组,在nonzero
中花费的时间比在这些转换上花费的时间大得多。关于python - 从argwhere到哪里?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/35796513/