我正在尝试实现Waterman-Eggert算法以查找次优的局部序列比对,但仍在努力了解如何“分簇”各个比对组。我的基本Smith-Waterman算法工作正常。

一个简单的测试,将以下顺序与自身对齐:

'HEAGHEAGHEAG'
'HEAGHEAGHEAG'

产生一个fMatrix,如下所示:
 [[  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
  [  0.   8.   0.   0.   0.   8.   0.   0.   0.   8.   0.   0.   0.]
  [  0.   0.  13.   0.   0.   0.  13.   0.   0.   0.  13.   0.   0.]
  [  0.   0.   0.  17.   0.   0.   0.  17.   0.   0.   0.  17.   0.]
  [  0.   0.   0.   0.  23.   0.   0.   0.  23.   0.   0.   0.  23.]
  [  0.   8.   0.   0.   0.  31.   0.   0.   0.  31.   0.   0.   0.]
  [  0.   0.  13.   0.   0.   0.  36.   0.   0.   0.  36.   0.   0.]
  [  0.   0.   0.  17.   0.   0.   0.  40.   0.   0.   0.  40.   0.]
  [  0.   0.   0.   0.  23.   0.   0.   0.  46.   0.   0.   0.  46.]
  [  0.   8.   0.   0.   0.  31.   0.   0.   0.  54.   4.   0.   0.]
  [  0.   0.  13.   0.   0.   0.  36.   0.   0.   4.  59.   9.   0.]
  [  0.   0.   0.  17.   0.   0.   0.  40.   0.   0.   9.  63.  13.]
  [  0.   0.   0.   0.  23.   0.   0.   0.  46.   0.   0.  13.  69.]]

为了找到次优的比对,例如
'HEAGHEAGHEAG    '
'    HEAGHEAGHEAG'

您必须先删除最佳对齐方式(即沿主对角线),然后重新计算fMatrix;这被称为“去聚集”,其中比对的“簇”被定义为其路径相交/共享一对或多对比对的残基的任何比对。除fMatrix之外,还有一个辅助矩阵,其中包含有关fMatrix构造方向的信息。

用于构建fMatrix和回溯矩阵的代码片段如下:
# Generates fMatrix.
for i in range(1, length):
    for j in range(1, length):
        matchScore = fMatrix[i-1][j-1] + simMatrixDict[seq[i-1]+seq[j-1]]
        insScore = fMatrix[i][j-1] + gap
        delScore = fMatrix[i-1][j] + gap
        fMatrix[i][j] = max(0, matchScore, insScore, delScore)

        # Generates matrix for backtracking.
        if fMatrix[i][j] == matchScore:
            backMatrix[i][j] = 2
        elif fMatrix[i][j] == insScore:
            backMatrix[i][j] = 3        # INSERTION in seq - Horizontal
        elif fMatrix[i][j] == delScore:
            backMatrix[i][j] = 1        # DELETION in seq - Vertical

        if fMatrix[i][j] >= backtrackStart:
            backtrackStart = fMatrix[i][j]
            endCoords = i, j
return fMatrix, backMatrix, endCoords

为了删除此最佳对齐方式,我尝试使用此backMatrix来回溯fMatrix(按照原始的Smith-Waterman算法)并按我的方式设置fMatrix[i][j] = 0,但这不会删除整个团,仅删除其中的确切对齐方式丛。

有关一些背景信息,Smith-Waterman算法的Wikipedia页面介绍了fMatrix的构造方式,并且在here上还提供了有关回溯工作原理的说明。 Waterman-Eggert算法大致解释为here

谢谢。

最佳答案

好的。这是一些代码,可以执行您想要的操作。我使用了 pretty-print 库(pprint),以便输出看起来不错。 (如果矩阵中的数字是一位数字,则看起来最好,但是如果有多位数字,则对齐会有些困惑。)

它是如何工作的?

因为您只需要更改主对角线以及上面和下面的对角线上的数字,所以我们只需要一个for循环。 matrix[i][i]始终位于主对角线上,因为它是i行向下,而i列则位于其对角线。 matrix[i][i-1]始终是相邻的下对角线,因为它向下是i行,而在整个i-1列上。 matrix[i-1][i]始终是相邻的上对角线,因为它向下是i-1行,而在两端是i行。

#!/usr/bin/python
import pprint

matrix = [
    [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,],
    [  0,   8,   0,   0,   0,   8,   0,   0,   0,   8,   0,   0,   0,],
    [  0,   0,  13,   0,   0,   0,  13,   0,   0,   0,  13,   0,   0,],
    [  0,   0,   0,  17,   0,   0,   0,  17,   0,   0,   0,  17,   0,],
    [  0,   0,   0,   0,  23,   0,   0,   0,  23,   0,   0,   0,  23,],
    [  0,   8,   0,   0,   0,  31,   0,   0,   0,  31,   0,   0,   0,],
    [  0,   0,  13,   0,   0,   0,  36,   0,   0,   0,  36,   0,   0,],
    [  0,   0,   0,  17,   0,   0,   0,  40,   0,   0,   0,  40,   0,],
    [  0,   0,   0,   0,  23,   0,   0,   0,  46,   0,   0,   0,  46,],
    [  0,   8,   0,   0,   0,  31,   0,   0,   0,  54,   4,   0,   0,],
    [  0,   0,  13,   0,   0,   0,  36,   0,   0,   4,  59,   9,   0,],
    [  0,   0,   0,  17,   0,   0,   0,  40,   0,   0,   9,  63,  13,],
    [  0,   0,   0,   0,  23,   0,   0,   0,  46,   0,   0,  13,  69,]]

print "Original Matrix"
pprint.pprint(matrix)
print

for i in range(len(matrix)):
    matrix[i][i] = 0
    if (i > 0) and (i < (len(matrix))):
        matrix[i][i-1] = 0
        matrix[i-1][i] = 0

print "New Matrix"
pprint.pprint(matrix)

输出:
Original Matrix
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0],
 [0, 0, 13, 0, 0, 0, 13, 0, 0, 0, 13, 0, 0],
 [0, 0, 0, 17, 0, 0, 0, 17, 0, 0, 0, 17, 0],
 [0, 0, 0, 0, 23, 0, 0, 0, 23, 0, 0, 0, 23],
 [0, 8, 0, 0, 0, 31, 0, 0, 0, 31, 0, 0, 0],
 [0, 0, 13, 0, 0, 0, 36, 0, 0, 0, 36, 0, 0],
 [0, 0, 0, 17, 0, 0, 0, 40, 0, 0, 0, 40, 0],
 [0, 0, 0, 0, 23, 0, 0, 0, 46, 0, 0, 0, 46],
 [0, 8, 0, 0, 0, 31, 0, 0, 0, 54, 4, 0, 0],
 [0, 0, 13, 0, 0, 0, 36, 0, 0, 4, 59, 9, 0],
 [0, 0, 0, 17, 0, 0, 0, 40, 0, 0, 9, 63, 13],
 [0, 0, 0, 0, 23, 0, 0, 0, 46, 0, 0, 13, 69]]

New Matrix
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 13, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 17, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 23],
 [0, 8, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0],
 [0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0],
 [0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 40, 0],
 [0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0, 46],
 [0, 8, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 13, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 17, 0, 0, 0, 40, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 23, 0, 0, 0, 46, 0, 0, 0, 0]]

关于python - 实现沃特曼-埃格特算法,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/16611706/

10-12 20:14