据我所知,在python中没有用于兰德指数的软件包,而对于已调整兰德指数,您可以选择使用sklearn.metrics.adjusted_rand_score(labels_true, labels_pred)
。
我为Rand Score编写了代码,并将与其他人分享作为该帖子的答案。
最佳答案
from scipy.misc import comb
from itertools import combinations
import numpy as np
def check_clusterings(labels_true, labels_pred):
"""Check that the two clusterings matching 1D integer arrays."""
labels_true = np.asarray(labels_true)
labels_pred = np.asarray(labels_pred)
# input checks
if labels_true.ndim != 1:
raise ValueError(
"labels_true must be 1D: shape is %r" % (labels_true.shape,))
if labels_pred.ndim != 1:
raise ValueError(
"labels_pred must be 1D: shape is %r" % (labels_pred.shape,))
if labels_true.shape != labels_pred.shape:
raise ValueError(
"labels_true and labels_pred must have same size, got %d and %d"
% (labels_true.shape[0], labels_pred.shape[0]))
return labels_true, labels_pred
def rand_score (labels_true, labels_pred):
"""given the true and predicted labels, it will return the Rand Index."""
check_clusterings(labels_true, labels_pred)
my_pair = list(combinations(range(len(labels_true)), 2)) #create list of all combinations with the length of labels.
def is_equal(x):
return (x[0]==x[1])
my_a = 0
my_b = 0
for i in range(len(my_pair)):
if(is_equal((labels_true[my_pair[i][0]],labels_true[my_pair[i][1]])) == is_equal((labels_pred[my_pair[i][0]],labels_pred[my_pair[i][1]]))
and is_equal((labels_pred[my_pair[i][0]],labels_pred[my_pair[i][1]])) == True):
my_a += 1
if(is_equal((labels_true[my_pair[i][0]],labels_true[my_pair[i][1]])) == is_equal((labels_pred[my_pair[i][0]],labels_pred[my_pair[i][1]]))
and is_equal((labels_pred[my_pair[i][0]],labels_pred[my_pair[i][1]])) == False):
my_b += 1
my_denom = comb(len(labels_true),2)
ri = (my_a + my_b) / my_denom
return ri
作为一个简单的例子:
labels_true = [1, 1, 0, 0, 0, 0]
labels_pred = [0, 0, 0, 1, 0, 1]
rand_score (labels_true, labels_pred)
#0.46666666666666667
可能有一些方法可以对其进行改进,使其更具Python风格。如果您有任何建议,可以改进它。
我发现this implementation似乎更快。
import numpy as np
from scipy.misc import comb
def rand_index_score(clusters, classes):
tp_plus_fp = comb(np.bincount(clusters), 2).sum()
tp_plus_fn = comb(np.bincount(classes), 2).sum()
A = np.c_[(clusters, classes)]
tp = sum(comb(np.bincount(A[A[:, 0] == i, 1]), 2).sum()
for i in set(clusters))
fp = tp_plus_fp - tp
fn = tp_plus_fn - tp
tn = comb(len(A), 2) - tp - fp - fn
return (tp + tn) / (tp + fp + fn + tn)
作为一个简单的例子:
labels_true = [1, 1, 0, 0, 0, 0]
labels_pred = [0, 0, 0, 1, 0, 1]
rand_index_score (labels_true, labels_pred)
#0.46666666666666667
关于python - 兰德指数功能(聚类性能评估),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/49586742/