我正在尝试比较多项式,二项式和伯努利分类器的性能,但出现错误:
TypeError:float()参数必须是字符串或数字,而不是“ set”
下面的代码是MultinomialNB
。
documents = [(list(movie_reviews.words(fileid)), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]
random.shuffle(documents)
#print(documents[1])
all_words = []
for w in movie_reviews.words():
all_words.append(w.lower())
all_words = nltk.FreqDist(all_words)
word_features = list(all_words.keys())[:3000]
def look_for_features(document):
words = set(document)
features = {}
for x in word_features:
features[x] = {x in words}
return features
#feature set will be finding features and category
featuresets = [(look_for_features(rev), category) for (rev, category) in documents]
training_set = featuresets[:1400]
testing_set = featuresets[1400:]
#Multinomial
MNB_classifier = SklearnClassifier(MultinomialNB())
MNB_classifier.train(training_set)
print ("Accuracy: ", (nltk.classify.accuracy(MNB_classifier,testing_set))*100)
错误似乎在
MNB_classifier.train(training_set)
中。此代码中的错误类似于错误here。
最佳答案
更改...
features[x] = {x in words}
至...
features[x] = x in words
第一行创建对
featuresets
或(word, {True})
的列表(word, {False})
,即第二个元素是set
。 SklearnClassifier
不应将此作为标签。该代码非常类似于"Creating a module for Sentiment Analysis with NLTK"中的代码。作者在那里使用了元组
(x in words)
,但这与x in words
没什么不同。关于python-3.x - 来自MultinomialNB的TypeError:float()参数必须为字符串或数字,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/49415195/