我需要将初始列的组融为归一化程度不好的数据集中的多个目标列。这是一个示例(来自此问题pandas dataframe reshaping/stacking of multiple value variables into seperate columns):
des1 des2 des3 interval1 interval2 interval3
value
aaa a b c ##1 ##2 ##3
bbb d e f ##4 ##5 ##6
ccc g h i ##7 ##8 ##9
我正在尝试将其融合为以下方向:
des interval
value
aaa a ##1
aaa b ##2
aaa c ##3
bbb d ##4
bbb e ##5
bbb f ##6
ccc g ##7
ccc h ##8
ccc i ##9
我希望使用melt而不是stack来避免手动设置大量数据。到目前为止,这是我的开始:
import pandas as pd
import numpy as np
import fnmatch
column_list = list(df_initial.columns.values)
question_sources = [c for c in fnmatch.filter(column_list, "measure*question*source")]
question_ranks = [c for c in fnmatch.filter(column_list, "measure*rank")]
question_targets = [c for c in fnmatch.filter(column_list, "measure*targeted")]
question_statuses = [c for c in fnmatch.filter(column_list, "measure*status")]
place = [c for c in fnmatch.filter(column_list, "place")]
measure_statuses = [c for c in fnmatch.filter(column_list, "measureInfo_status")]
starter_list = place + measure_statuses
df_gpro_melt_1 = (pd.melt(df_initial, id_vars=starter_list,
value_vars=question_sources, var_name="question_sources",
value_name="question_sources_values"))
是否可以将初始列组融合为多个目标列?任何建议深表感谢。
最佳答案
如果您的列遵循示例数据框中的模式,则此方法适用于您的示例:
pd.concat((pd.DataFrame({'des':df.iloc[:,i],
'interval':df.iloc[:,i+3]})
for i in range(3)))
如果两对不同,则可以使用此模式,但要遍历列表
tuples = [(0,3),(1,4),(2,5)]
pd.concat((pd.DataFrame({'des':df.iloc[:,i],
'interval':df.iloc[:,j]})
for i,j in tuples))
关于python - Python Pandas将初始列组融为多个目标列,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/35187963/