比较两个不同的Y变量时,没有真正的方法知道哪种图表类型属于哪个Y轴。我需要一个图例,说明哪种图表类型属于哪个数据集。

在此站点本身的帮助下,我已经能够使用不同的图表类型来绘制不同的分类因子,但是如您所见,无法分辨哪种图表类型属于哪个因子/变量

这是数据表(tm_daily_df),以及当前代码

   report_date shift     UTL_R  Head_Count
0   2019-03-17     A  0.669107          39
1   2019-03-18     A  0.602197          69
2   2019-03-19     A  0.568741          72
3   2019-03-20     A  0.552013          78
4   2019-03-21     A  0.585469          57
5   2019-03-22     A  0.635652          61
6   2019-03-23     A  0.602197          51
7   2019-03-17     1  0.828020          16
8   2019-03-17     2  0.585469           8
9   2019-03-17     3  0.526922          15
10  2019-03-18     1  0.618924          30
11  2019-03-18     2  0.610560          20
12  2019-03-18     3  0.577105          19
13  2019-03-19     1  0.610560          28
14  2019-03-19     2  0.602197          26
15  2019-03-19     3  0.468375          18
16  2019-03-20     1  0.543650          33
17  2019-03-20     2  0.552013          26
18  2019-03-20     3  0.552013          19
19  2019-03-21     1  0.577105          22
20  2019-03-21     2  0.585469          19
21  2019-03-21     3  0.602197          16
22  2019-03-22     1  0.593833          26
23  2019-03-22     2  0.685835          20
24  2019-03-22     3  0.635652          15
25  2019-03-23     1  0.577105          23
26  2019-03-23     2  0.627288          16
27  2019-03-23     3  0.602197          12


fig, ax = plt.subplots(figsize=(15,6))
g = sns.lineplot(x='report_date',  y='UTL_R', data=tm_daily_df, ax=ax, hue = 'shift', legend = None,
             marker='o', markersize=10)
ax2 = ax.twinx()
g = sns.barplot(x='report_date',  y='Head_Count', data=tm_daily_df, ax=ax2, hue='shift',alpha=.5)
ax.set_title('Utilization Ratio vs HeadCount')
plt.show()


我想有一个图例,说明哪种图表类型属于哪个数据集。在这种情况下,会有一个辅助图例显示一条线和单词“ UTL_R”,并在单词“ Head_Count”旁边显示一个正方形(或任何代表条形图的东西)。
我也欢迎其他任何可以定义应用图表类型的想法。请记住,此图是大量变量中的一个,不是一个实例。

如果这不可能,我是否可以将图像/小桌子放到图中?

最佳答案

tl; dr在底部

我最近还需要在一个项目上实现两个图例。我的代码是这样的:

def plot_my_data(ax, local_zerog, local_oneg, local_maxg):
    # local_zerog list looks like: [local_zerog_dcmdcl_names, local_zerog_dcmdcl_values, local_zerog_time2double_names, local_zerog_time2double_values]
    # the others are structured the same way as well
    mpl.rcParams["lines.markersize"] = 7
    dcmdcl = ax.scatter(local_zerog[0], local_zerog[1], label='Zero G', facecolors='none', edgecolors='b') #dcmdcl
    ax.scatter(local_oneg[0], local_oneg[1], label="One G", facecolors='none', edgecolors='g')
    ax.scatter(local_maxg[0], local_maxg[1], label="Max G", facecolors='none', edgecolors='r')
    ax.tick_params(axis="x", direction="in", top=False, labeltop=False, labelbottom=True)
    ax.tick_params(axis="y", direction="in", right=True)
    labels = ax.get_xticklabels()
    plt.setp(labels, rotation=90, horizontalalignment='center')
    legend1 = ax.legend(loc=1)
    time2double = ax.scatter(local_zerog[2], local_zerog[3], label='Zero G', marker='s', color='b') #time2double
    ax.scatter(local_oneg[2], local_oneg[3], label="One G", marker='s', color='g')
    ax.scatter(local_maxg[2], local_maxg[3], label="Max G", marker='s', color='r')
    ax.plot(local_oneg[0], [0 for _ in local_oneg[0]], color='k')  # line at 0
    ax.plot(local_oneg[2], [0 for _ in local_oneg[2]], color='k')
    ax.legend([dcmdcl, time2double], ["dcmdcl [%]", "time2double [s]"], loc=2)
    plt.gca().add_artist(legend1)


我基本上有6组数据:3个用于dcmdcl和3个用于time2double。每个都有不同的颜色/形状,所以基本上我在线条中画出了所有形状

dcmdcl = ax.scatter(local_zerog[0], local_zerog[1], label='Zero G', facecolors='none', edgecolors='b') #dcmdcl
ax.scatter(local_oneg[0], local_oneg[1], label="One G", facecolors='none', edgecolors='g')
ax.scatter(local_maxg[0], local_maxg[1], label="Max G", facecolors='none', edgecolors='r')
ax.tick_params(axis="x", direction="in", top=False, labeltop=False, labelbottom=True)
ax.tick_params(axis="y", direction="in", right=True)
labels = ax.get_xticklabels()
plt.setp(labels, rotation=90, horizontalalignment='center')
legend1 = ax.legend(loc=1)


最后一行根据我分配的各种标签生成图例。现在,为了区分形状,我选择了一个dcmdcl和一个time2double并创建了另一个图例。相关代码为:

dcmdcl = ax.scatter(local_zerog[0], local_zerog[1], label='Zero G', facecolors='none', edgecolors='b') #dcmdcl
time2double = ax.scatter(local_zerog[2], local_zerog[3], label='Zero G', marker='s', color='b') #time2double
ax.legend([dcmdcl, time2double], ["dcmdcl [%]", "time2double [s]"], loc=2)


在这里,我基本上将其提供给两个特定实例,并告诉它根据此信息创建另一个图例并将其放置在另一个位置。

tl; dr

看起来您已经有了想要的其中一个数据集的图例,因此现在您基本上需要运行:

legend1 = ax.legend(['put a series of items you want to describe here'], ['put how you would like to title them (needs to be in same order as previous list)'], loc=2)
plt.gca().add_artist(legend1)


我认为订单在这里可能很重要(我不记得是从什么时候开始的),但是如果您注意到我的订单是:


画一些东西
legend1 = ax.legend(loc=1)制作图例(尚未绘制,只是一个变量)
策划更多的东西
ax.legend([dcmdcl, time2double], ["dcmdcl [%]", "time2double [s]"], loc=2)(请注意,这次没有将此变量分配给变量)
plt.gca().add_artist(legend1)现在我使用之前制作的变量通过add_artist()对其进行绘制


我的代码用于生成每个传递到上述函数中的ax

fig = plt.figure(figsize=(15, 15))

ax = fig.add_subplot(1, 3, 1)
zerog, oneg, maxg = build_plot_data(lower_mach)
plot_my_data(ax, zerog, oneg, maxg)
ax.set_title("Mach < .7")

关于python - 如何显示每个Y轴的图表类型以区分比较因素,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/55507061/

10-12 18:53