我正在尝试训练具有以下结构的神经网络:

model = Sequential()

model.add(Conv1D(filters = 300, kernel_size = 5, activation='relu', input_shape=(4000, 1)))
model.add(Conv1D(filters = 300, kernel_size = 5, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(filters = 320, kernel_size = 5, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Dropout(0.5))

model.add(Dense(num_labels, activation='softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

return model


我收到此错误:

expected dense_1 to have shape (442, 3) but got array with shape (3, 1)


我的输入是一组短语(总共12501个),它们已针对4000个最相关的单词进行了标记,并且有3种可能的分类。因此,我的输入是train_x.shape =(12501,4000)。我将其重塑为Conv1D层的(12501,4000,1)。现在,我的train_y.shape =(12501,3),然后将其重塑为(12501,3,1)。

我正在使用fit函数,如下所示:

model.fit(train_x, train_y, batch_size=32, epochs=10, verbose=1, validation_split=0.2, shuffle=True)


我究竟做错了什么?

最佳答案

无需转换标签形状即可分类。您可以查看您的网络结构。

print(model.summary())
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
conv1d_1 (Conv1D)            (None, 3996, 300)         1800
_________________________________________________________________
conv1d_2 (Conv1D)            (None, 3992, 300)         450300
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 1330, 300)         0
_________________________________________________________________
conv1d_3 (Conv1D)            (None, 1326, 320)         480320
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 442, 320)          0
_________________________________________________________________
dropout_1 (Dropout)          (None, 442, 320)          0
_________________________________________________________________
dense_1 (Dense)              (None, 442, 3)            963
=================================================================
Total params: 933,383
Trainable params: 933,383
Non-trainable params: 0
_________________________________________________________________


模型的最后输出是(None, 442, 3),但是标签的形状是(None, 3, 1)。您最终应该以全局池化层GlobalMaxPooling1D()或展平层Flatten()结尾,将3D输出转换为2D输出,以进行分类或回归。

关于python - 卷积神经网络中的形状误差,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/53713947/

10-12 17:57