etcd:增加30%的写入性能
本文最终的解决方式很简单,就是将现有卷升级为支持更高IOPS的卷,但解决问题的过程值得推荐。
译自:etcd: getting 30% more write/s
我们的团队看管着大约30套自建的Kubernetes集群,最近需要针对etcd集群进行性能分析。
每个etcd集群有5个成员,实例型号为m6i.xlarge,最大支持6000 IOPS。每个成员有3个卷:
- root卷
- write-ahead-log的卷
- 数据库卷
每个卷的型号为 gp2,大小为300gb,最大支持900 IOPS:
测试写性能
首先(在单独的实例上执行)执行etcdctl check perf
命令,模拟etcd集群的负载,并打印结果。可以通过--load
参数来模拟不同大小的集群负载,支持参数为:s(small)
, m(medium)
, l(large)
, xl(xLarge)
。
当load为s
时,测试是通过的。
但当load为l
时,测试失败。可以看到,集群可执行6.6K/s的写操作,可以认为我们的集群介于中等集群和大型集群之间。
下面是使用iostat
展示的磁盘状态,其中nvme1n1
是etcd的write-ahead-log卷,其IO使用率已经达到100%,导致etcd的线程等待IO。
下面使用fio来查看fdatasync的延迟(见附录):
fio --rw=write --ioengine=sync --fdatasync=1 --directory=benchmark --size=22m --bs=2300 --name=sandbox
...
Jobs: 1 (f=1): [W(1)][100.0%][w=1594KiB/s][w=709 IOPS][eta 00m:00s]
...
fsync/fdatasync/sync_file_range:
sync (usec): min=476, max=10320, avg=1422.54, stdev=727.83
sync percentiles (usec):
| 1.00th=[ 523], 5.00th=[ 545], 10.00th=[ 570], 20.00th=[ 603],
| 30.00th=[ 660], 40.00th=[ 775], 50.00th=[ 1811], 60.00th=[ 1909],
| 70.00th=[ 1975], 80.00th=[ 2057], 90.00th=[ 2180], 95.00th=[ 2278],
| 99.00th=[ 2671], 99.50th=[ 2933], 99.90th=[ 4621], 99.95th=[ 5538],
| 99.99th=[ 7767]
...
Disk stats (read/write):
nvme1n1: ios=0/21315, merge=0/11364, ticks=0/13865, in_queue=13865, util=99.40%
可以看到fdatasync延迟的99th百分比为 2671 usec
(或 2.7ms),说明集群足够快(etcd官方建议最小10ms)。从上面的输出还可以看到报告的IOPS为709,相比gp2 EBS 卷宣称的900 IOPS来说并不算低。
升级为GP3
下面将卷升级为GP3(支持最小3000 IOPS)。
Jobs: 1 (f=1): [W(1)][100.0%][w=2482KiB/s][w=1105 IOPS][eta 00m:00s]
...
iops : min= 912, max= 1140, avg=1040.11, stdev=57.90, samples=19
...
fsync/fdatasync/sync_file_range:
sync (usec): min=327, max=5087, avg=700.24, stdev=240.46
sync percentiles (usec):
| 1.00th=[ 392], 5.00th=[ 429], 10.00th=[ 457], 20.00th=[ 506],
| 30.00th=[ 553], 40.00th=[ 603], 50.00th=[ 652], 60.00th=[ 709],
| 70.00th=[ 734], 80.00th=[ 857], 90.00th=[ 1045], 95.00th=[ 1172],
| 99.00th=[ 1450], 99.50th=[ 1549], 99.90th=[ 1844], 99.95th=[ 1975],
| 99.99th=[ 3556]
...
Disk stats (read/write):
nvme2n1: ios=5628/10328, merge=0/29, ticks=2535/7153, in_queue=9688, util=99.09%
可以看到IOPS变为了1105,但远低于预期,通过查看磁盘的使用率,发现瓶颈仍然是EBS卷。
鉴于实例类型支持的最大IOPS约为6000,我决定冒险一试,看看结果如何:
Jobs: 1 (f=1): [W(1)][100.0%][w=2535KiB/s][w=1129 IOPS][eta 00m:00s]
...
fsync/fdatasync/sync_file_range:
sync (usec): min=370, max=3924, avg=611.54, stdev=126.78
sync percentiles (usec):
| 1.00th=[ 420], 5.00th=[ 453], 10.00th=[ 474], 20.00th=[ 506],
| 30.00th=[ 537], 40.00th=[ 562], 50.00th=[ 594], 60.00th=[ 635],
| 70.00th=[ 676], 80.00th=[ 717], 90.00th=[ 734], 95.00th=[ 807],
| 99.00th=[ 963], 99.50th=[ 1057], 99.90th=[ 1254], 99.95th=[ 1336],
| 99.99th=[ 2900]
...
可以看到的确遇到了瓶颈,当IOPS规格从900变为3000时,实际IOPS增加了30%,但IOPS规格从3000变为6000时却没有什么变化。
IOPS到哪里去了?
操作系统通常会缓存写操作,当写操作结束之后,数据仍然存在缓存中,需要等待刷新到磁盘。
数据库则不同,它需要知道数据写入的时间和地点。假设一个执行EFTPOS(电子钱包转帐)交易的数据库被突然重启,仅仅知道数据被"最终"写入是不够的。
AWS在其文档中提到:
etcd在每个事务之后都会使用一个fdatasync系统调用,这也是为什么在fio命令中指定—fdatasync=1
的原因。
可以看到这种处理方式对性能的影响比较大。
下表展示了各个卷类型的最大性能,与etcd相关的是Max synchronous write:
可以看到etcd的iops一方面和自身实现有关,另一方面受到存储本身的限制。