我有一个问题,要在同一个数据帧(start_end)中将两列合并为一列,还要删除空值。我打算将“起始站”和“结束站”合并为“站”,并根据新列“站”保留“持续时间”我试过pd.merge,pd.concat,pd.append,但是我没办法解决。
起始端数据帧:

    Duration    End station     Start station
14  1407        NaN             14th & V St NW
19  509         NaN             21st & I St NW
20  638         15th & P St NW.  NaN
27  1532        NaN              Massachusetts Ave & Dupont Circle NW
28  759         NaN              Adams Mill & Columbia Rd NW

预期产量:
    Duration    stations
14  1407        14th & V St NW
19  509         21st & I St NW
20  638         15th & P St NW
27  1532        Massachusetts Ave & Dupont Circle NW
28  759         Adams Mill & Columbia Rd NW

我目前掌握的代码:
#start_end is the dataframe, 'start station', 'end station', 'duration'
start_end = pd.concat([df_start, df_end])

这就是我试图:
station = pd.merge([start_end['Start station'],start_end['End station']])

最佳答案

>>> df
   Duration      End station                         Start station
0      1407              NaN                        14th & V St NW
1       509              NaN                        21st & I St NW
2       638  15th & P St NW.                                   NaN
3      1532              NaN  Massachusetts Ave & Dupont Circle NW
4       759              NaN           Adams Mill & Columbia Rd NW

给这两列起相同的名字
>>> df.columns = df.columns.str.replace('.*?station', 'station')
>>> df
   Duration          station                               station
0      1407              NaN                        14th & V St NW
1       509              NaN                        21st & I St NW
2       638  15th & P St NW.                                   NaN
3      1532              NaN  Massachusetts Ave & Dupont Circle NW
4       759              NaN           Adams Mill & Columbia Rd NW

堆叠然后松开。
>>> s = df.stack()
>>> s
0  Duration                                    1407
   station                           14th & V St NW
1  Duration                                     509
   station                           21st & I St NW
2  Duration                                     638
   station                          15th & P St NW.
3  Duration                                    1532
   station     Massachusetts Ave & Dupont Circle NW
4  Duration                                     759
   station              Adams Mill & Columbia Rd NW
dtype: object
>>> df = s.unstack()
>>> df
  Duration                               station
0     1407                        14th & V St NW
1      509                        21st & I St NW
2      638                       15th & P St NW.
3     1532  Massachusetts Ave & Dupont Circle NW
4      759           Adams Mill & Columbia Rd NW
>>>

这就是我的想法:
.stack创建具有多索引的序列,并为您处理空值。它在列名上对齐第二个级别,因为列名是相同的,所以只有一个级别-取消堆叠只生成一个列。
如果不更改列名,这实际上只是根据索引之间的差异进行的猜测。
>>> # without changing column names
>>> s.index
MultiIndex(levels=[[0, 1, 2, 3, 4], ['Duration', 'End station', 'Start station']],
           labels=[[0, 0, 1, 1, 2, 2, 3, 3, 4, 4], [0, 2, 0, 2, 0, 1, 0, 2, 0, 2]])

>>> # column names the same
>>> s.index
MultiIndex(levels=[[0, 1, 2, 3, 4], ['Duration', 'station']],
           labels=[[0, 0, 1, 1, 2, 2, 3, 3, 4, 4], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]])

似乎有点棘手,也许有人会对此发表评论。
替代-使用pd.concat.dropna
>>> stations = pd.concat([df.iloc[:,1],df.iloc[:,2]]).dropna()
>>> stations.name = 'stations'
>>> stations
2                         15th & P St NW.
0                          14th & V St NW
1                          21st & I St NW
3    Massachusetts Ave & Dupont Circle NW
4             Adams Mill & Columbia Rd NW
Name: stations, dtype: object

>>> df2 = pd.concat([df['Duration'], stations], axis=1)
>>> df2
   Duration                              stations
0      1407                        14th & V St NW
1       509                        21st & I St NW
2       638                       15th & P St NW.
3      1532  Massachusetts Ave & Dupont Circle NW
4       759           Adams Mill & Columbia Rd NW

关于python - 在pandas/python的同一数据框中将两列合并为一列,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/50662613/

10-12 16:34