streaming包提供a zipsWith function

zipsWith
  :: (Monad m, Functor h)
  => (forall x y. f x -> g y -> h (x, y))
  -> Stream f m r -> Stream g m r -> Stream h m r

以及更简化的版本,
zipsWith'
  :: Monad m
  => (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
  -> Stream f m r -> Stream g m r -> Stream h m r

这些可以很容易地从FreeT包中适应 free 。但是该软件包提供了免费monad转换器的another version:
newtype FT f m a = FT
  { runFT
      :: forall r.
         (a -> m r)
      -> (forall x. (x -> m r) -> f x -> m r)
      -> m r }

还有第三个(相当简单)的公式:
newtype FF f m a = FF
  { runFF
      :: forall n. Monad n
      => (forall x. f x -> n x)  -- A natural transformation
      -> (forall x. m x -> n x)  -- A monad morphism
      -> n a }

可以在FreeTFTFF之间来回转换,这提供了一种间接方式来实现zipsWithFFFT的亲戚。但是,这似乎并不令人满意。我寻求更直接的解决方案。

该问题似乎与使用折叠来压缩列表的挑战有关。 Launchbury等人的论文Coroutining Folds with Hyperfunctions以及Donnacha Kidney的blog post都解决了这一问题。这些都不是非常简单,而且我不知道如何将它们适应FTFF上下文。

当我研究这个问题时,我意识到streaming应该确实提供了一些更强大的版本。最简单的是
zipsWith''
  :: Monad m
  => (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
  -> Stream f m r -> Stream g m s -> Stream h m (Either r s)

但更强大的选项将包括其余部分:
zipsWithRemains
  :: Monad m
  => (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
  -> Stream f m r
  -> Stream g m s
  -> Stream h m (Either (r, Stream g m s)
                        (f (Stream f m r), s))

我猜想zipsWith''不会比zipsWith'难,但是在zipsWithRemainsFT的上下文中FF可能是一个更大的挑战,因为其余部分可能必须以某种方式进行重构。

注意

既然之前存在一些困惑,请允许我提及,我并不是在寻求为zipsWithRemainsStream编写FreeT的帮助;我只在FTFF的功能上寻求帮助。

最佳答案

我为zipsWith'实现了zipsWith''zipsWithRemainsFT。我的实现非常类似于this blog postzipWith的实现。

首先,请注意,给定zipsWith',实现zipsWith''很简单:

zipsWith''
  :: (Functor f, Functor g, Monad m)
  => (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
  -> FT f m r
  -> FT g m s
  -> FT h m (Either r s)
zipsWith'' phi a b = zipsWith' phi (Left <$> a) (Right <$> b)

因此,让我们实现zipsWith'

首先使用折叠功能扩展和注释zipWith版本:
newtype RecFold a r = RecFold { runRecFold :: BFold a r }
type AFold a r = RecFold a r -> r
type BFold a r = a -> AFold a r -> r

zipWith
  :: forall f g a b c.
  (Foldable f, Foldable g)
  => (a -> b -> c)
  -> f a
  -> g b
  -> [c]
zipWith c a b = loop af bf where
  af :: AFold a [c]
  af = foldr ac ai a
  ai :: AFold a [c]
  ai _ = []
  ac :: a -> AFold a [c] -> AFold a [c]
  ac ae ar bl = runRecFold bl ae ar
  bf :: BFold a [c]
  bf = foldr bc bi b
  bi :: BFold a [c]
  bi _ _ = []
  bc :: b -> BFold a [c] -> BFold a [c]
  bc be br ae ar = c ae be : loop ar br
  loop :: AFold a [c] -> BFold a [c] -> [c]
  loop al bl = al (RecFold bl)

并将其转换为zipsWith':
newtype RecFold f m r = RecFold { runRecFold :: BFold f m r }
type AFold f m r = m (RecFold f m r -> r)
type BFold f m r = m (f (AFold f m r) -> r)

zipsWith'
  :: forall f g h m r.
  (Monad m, Functor f, Functor g)
  => (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
  -> FT f m r
  -> FT g m r
  -> FT h m r
zipsWith' phi a b = loop af bf where
  af :: AFold f m (FT h m r)
  af = runFT a ai ac
  ai :: r -> AFold f m (FT h m r)
  ai r = return $ const $ return r
  ac :: (x -> AFold f m (FT h m r)) -> f x -> AFold f m (FT h m r)
  ac am ae = return $ effect . fmap ($ (fmap am ae)) . runRecFold
  bf :: BFold f m (FT h m r)
  bf = runFT b bi bc
  bi :: r -> BFold f m (FT h m r)
  bi r = return $ const $ return r
  bc :: (x -> BFold f m (FT h m r)) -> g x -> BFold f m (FT h m r)
  bc bm be = return $ wrap . flip (phi loop) (fmap bm be)
  loop :: AFold f m (FT h m r) -> BFold f m (FT h m r) -> FT h m r
  loop av bv = effect $ fmap ($ (RecFold bv)) av

在这里,使用了两个辅助功能:effectwrap
effect :: Monad m => m (FT f m r) -> FT f m r
effect m = FT $ \hr hy -> m >>= \r -> runFT r hr hy

wrap :: f (FT f m r) -> FT f m r
wrap s = FT $ \hr hy -> hy (\v -> runFT v hr hy) s

请注意,结果可能是实现了这些功能的任何monad。

要实现zipsWithRemains,首先要为普通zipWithRemains实现Foldable:
data ListWithTail a b = Nil b | Cons a (ListWithTail a b)
type Result a b c = ListWithTail c (Either [b] (a, [a]))
newtype RecFold a b c = RecFold { runRecFold :: BFold a b c }
type AFold a b c = (RecFold a b c -> Result a b c, [a])
type BFold a b c = (a -> AFold a b c -> Result a b c, [b])

zipWithRemains
  :: forall f g a b c.
  (Foldable f, Foldable g)
  => (a -> b -> c)
  -> f a
  -> g b
  -> Result a b c
zipWithRemains c a b = loop af bf where
  af :: AFold a b c
  af = foldr ac ai a
  ai :: AFold a b c
  ai = (\bl -> Nil $ Left $ snd (runRecFold bl), [])
  ac :: a -> AFold a b c -> AFold a b c
  ac ae ar = (\bl -> fst (runRecFold bl) ae ar, ae : snd ar)
  bf :: BFold a b c
  bf = foldr bc bi b
  bi :: BFold a b c
  bi = (\ae ar -> Nil $ Right (ae, snd ar), [])
  bc :: b -> BFold a b c -> BFold a b c
  bc be br = (\ae ar -> Cons (c ae be) (loop ar br), be : snd br)
  loop :: AFold a b c -> BFold a b c -> Result a b c
  loop al bl = fst al (RecFold bl)

此处,折叠的结果不是函数,而是包含函数和值的2元组。后者用于处理“遗留”案件。

这也可以适应FT:
type Result f g h m r s = FT h m (Either (r, FT g m s) (f (FT f m r), s))
newtype RecFold f g h m r s = RecFold { runRecFold :: BFold f g h m r s }
type AFold f g h m r s = m (RecFold f g h m r s -> Result f g h m r s, FT f m r)
type BFold f g h m r s = m (f (AFold f g h m r s) -> Result f g h m r s, FT g m s)

zipsWithRemains
  :: forall f g h m r s.
  (Monad m, Functor f, Functor g)
  => (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
  -> FT f m r
  -> FT g m s
  -> Result f g h m r s
zipsWithRemains phi a b = loop af bf where
  af :: AFold f g h m r s
  af = runFT a ai ac
  ai :: r -> AFold f g h m r s
  ai r = return (return . Left . (r,) . effect . fmap snd . runRecFold, return r)
  ac :: (x -> AFold f g h m r s) -> f x -> AFold f g h m r s
  ac am ae = return (effect . fmap (($ (fmap am ae)) . fst) . runRecFold, wrap $ fmap (effect . fmap snd . am) ae)
  bf :: BFold f g h m r s
  bf = runFT b bi bc
  bi :: s -> BFold f g h m r s
  bi r = return (return . Right . (,r) . fmap (effect . fmap snd), return r)
  bc :: (x -> BFold f g h m r s) -> g x -> BFold f g h m r s
  bc bm be = return (wrap . flip (phi loop) (fmap bm be), wrap $ fmap (effect . fmap snd . bm) be)
  loop :: AFold f g h m r s -> BFold f g h m r s -> Result f g h m r s
  loop av bv = effect $ fmap (($ (RecFold bv)) . fst) av

我希望Haskell具有本地类型!

这可能会回答FT的问题。关于FF:设计这种类型以便可以对其进行任何操作,您首先必须将其转换为其他monad。所以,问题是,哪个?可以将其转换为StreamFreeT,并使用这些类型的函数。也可以将其转换为FT并在其上使用上述实现。有一个更适合实现zipsWith的monad吗?也许。

关于haskell - 免费压缩Monad变压器,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/53462008/

10-12 16:32