我想对“ roc_curve”(sklearn)输出进行重新采样。
当我在Ipython中绘制fpr,tpr时,它很好,但是有时我想导出它(主要是用于客户端),但由于它不是线性的,因此很难理解。
例如
fpr =[0,0.1,0.4,0.9,1]
tpr =[0,0.3,0.4,0.5,1]
我如何重新采样
fpr
以每5%ex线性:[0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.,0.85,0.9,0.95,1]
和
tpr
:[0,0.15,0.3,0.3167,0.333,0.35,0.3667,0.383,0.4,0.41,0.42,0.43,0.44,0.45,0.46,0.47,0.48,0.49,0.5,0.75,1]
我该如何进行?
最佳答案
我认为您正在寻找的是分段常数插值。
import numpy as np
from scipy.interpolate import spline
fpr =[0,0.1,0.4,0.9,1]
tpr =[0,0.3,0.4,0.5,1]
n = 20
x_interp = np.linspace(0,1,n+1)
y_interp = spline(fpr, tpr, x_interp, order=0)
x_interp
是fpr
值[ 0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1. ]
y_interp
是相应的tpr
值[ 0. 0. 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.5 0.5 0.5]
关于python - 如何重新采样“roc_curve”(fpr,tpr)?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/30802688/