我有一个Pandas数据框,其中包含诸如
Order Balance Profit cum (%)
我正在做线性回归
model_profit_tr = pd.ols(y=df_closed['Profit cum (%)'], x=df_closed['Order'])
问题在于标准模型就像(不穿过原点的线的等式)
y = a * x + b
有2个自由度(a和b)
斜率(a):
a=model_profit_tr.beta['x']
并拦截(b):
b=model_profit_tr.beta['intercept']
我想将模型的自由度(从2降低到1),并且希望有一个像
y = a * x
最佳答案
使用intercept
关键字参数:
model_profit_tr = pd.ols(y=df_closed['Profit cum (%)'],
x=df_closed['Order'],
intercept=False)
从文档:
In [65]: help(pandas.ols)
Help on function ols in module pandas.stats.interface:
ols(**kwargs)
[snip]
Parameters
----------
y: Series or DataFrame
See above for types
x: Series, DataFrame, dict of Series, dict of DataFrame, Panel
weights : Series or ndarray
The weights are presumed to be (proportional to) the inverse of the
variance of the observations. That is, if the variables are to be
transformed by 1/sqrt(W) you must supply weights = 1/W
intercept: bool
True if you want an intercept. Defaults to True.
nw_lags: None or int
Number of Newey-West lags. Defaults to None.
[snip]
关于python - 线性回归-降低自由度,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/12664590/