我如何使用scipy.optimize的minimumsq函数将一条直线和一个平方拟合到下面的数据集?我知道如何使用polyfit来做到这一点。但是我需要使用minimumsq函数。
以下是x和y数据集:
x: 1.0,2.5,3.5,4.0,1.1,1.8,2.2,3.7
y: 6.008,15.722,27.130,33.772,5.257,9.549,11.098,28.828
有人可以帮我吗?
最佳答案
minimumsq()方法找到最小化误差函数(yExperimental与yFit之差)的参数集。
我使用元组来传递参数和lambda函数以进行线性拟合和二次拟合。
minimumsq从第一个猜测(参数的初始元组)开始,并尝试最小化误差函数。最后,如果minimumsq成功,它将返回最适合数据的参数列表。 (我打印看到了)。
我希望它能起作用
此致
from scipy.optimize import leastsq
import numpy as np
import matplotlib.pyplot as plt
def main():
# data provided
x=np.array([1.0,2.5,3.5,4.0,1.1,1.8,2.2,3.7])
y=np.array([6.008,15.722,27.130,33.772,5.257,9.549,11.098,28.828])
# here, create lambda functions for Line, Quadratic fit
# tpl is a tuple that contains the parameters of the fit
funcLine=lambda tpl,x : tpl[0]*x+tpl[1]
funcQuad=lambda tpl,x : tpl[0]*x**2+tpl[1]*x+tpl[2]
# func is going to be a placeholder for funcLine,funcQuad or whatever
# function we would like to fit
func=funcLine
# ErrorFunc is the diference between the func and the y "experimental" data
ErrorFunc=lambda tpl,x,y: func(tpl,x)-y
#tplInitial contains the "first guess" of the parameters
tplInitial1=(1.0,2.0)
# leastsq finds the set of parameters in the tuple tpl that minimizes
# ErrorFunc=yfit-yExperimental
tplFinal1,success=leastsq(ErrorFunc,tplInitial1[:],args=(x,y))
print " linear fit ",tplFinal1
xx1=np.linspace(x.min(),x.max(),50)
yy1=func(tplFinal1,xx1)
#------------------------------------------------
# now the quadratic fit
#-------------------------------------------------
func=funcQuad
tplInitial2=(1.0,2.0,3.0)
tplFinal2,success=leastsq(ErrorFunc,tplInitial2[:],args=(x,y))
print "quadratic fit" ,tplFinal2
xx2=xx1
yy2=func(tplFinal2,xx2)
plt.plot(xx1,yy1,'r-',x,y,'bo',xx2,yy2,'g-')
plt.show()
if __name__=="__main__":
main()
关于python - 如何在python中使用scipy.optimize中的scipy.optimize的Minimumsq函数以将直线和二次线都拟合到数据集x和y,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/19791581/