展望 future , interpolate
效果很好:
name days
0 a NaN
1 a NaN
2 a 2
3 a 3
4 a NaN
5 a NaN
records.loc[:, 'days'].interpolate(method='linear', inplace=True)
name days
0 a NaN
1 a NaN
2 a 2
3 a 3
4 a 4
5 a 5
...但是,它不处理起始行(仅向前)。
limit_direction
参数允许 {‘forward’, ‘backward’, ‘both’}
。这些都不起作用。有没有正确的方法来向后插值?我们可以假设一个序列递增或递减 1,它可能不会像在这个例子中那样从 0 开始。
最佳答案
似乎它只适用于参数 limit
参见 docs [In 47] :
records = pd.DataFrame(
{'name': {0: 'a', 1: 'a', 2: 'a', 3: 'a', 4: 'a', 5: 'a', 6: 'a', 7: 'a', 8: 'a', 9: 'a'},
'days': {0: 0.0, 1: np.nan, 2: np.nan, 3: np.nan, 4: 4.0, 5: 5.0, 6: np.nan, 7: np.nan, 8: np.nan, 9: 9.0}},
columns=['name','days'])
print (records)
name days
0 a 0.0
1 a NaN
2 a NaN
3 a NaN
4 a 4.0
5 a 5.0
6 a NaN
7 a NaN
8 a NaN
9 a 9.0
#by default limit_direction='forward'
records['forw'] = records['days'].interpolate(method='linear',
limit=1)
records['backw'] = records['days'].interpolate(method='linear',
limit_direction='backward',
limit=1)
records['both'] = records['days'].interpolate(method='linear',
limit_direction='both',
limit=1)
print (records)
name days forw backw both
0 a 0.0 0.0 0.0 0.0
1 a NaN 1.0 NaN 1.0
2 a NaN NaN NaN NaN
3 a NaN NaN 3.0 3.0
4 a 4.0 4.0 4.0 4.0
5 a 5.0 5.0 5.0 5.0
6 a NaN 6.0 NaN 6.0
7 a NaN NaN NaN NaN
8 a NaN NaN 8.0 8.0
9 a 9.0 9.0 9.0 9.0
关于python - Pandas 在数据框中向后插入(),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/40582640/