我想将滑块控件添加到我的绘图(pic)中以同时控制所有元素。
我可以轻松地将滑块控件添加到只有一行的图形中。在这种情况下,我将一系列情节列表(以字典形式)放入数据变量中:
plotly.graph_objs.Figure(数据= [plot1,plot2],布局=布局)
而且效果很好。
但是为了在同一张图上绘制多条线,我必须将带有图的列表列表放入数据变量中(有I吗?):
plotly.graph_objs.Figure(数据= [[[plot1.1,plot2.1],[plot1.2,plot2.2]],布局=布局)
但是plot.ly仍然期望字典列表。
条目应为dict的子类。
是否可以使用一个滑块控件同时控制多个元素?
import plotly
import plotly.plotly as py
import numpy as np
plotly.offline.init_notebook_mode()
exp = 2.71
N = 3
x_start = -N
x_end = N
dx = 0.1
y_start = -N
y_end = N
dy = 0.1
x_axis = np.arange(x_start, x_end, dx)
y_axis = np.arange(y_start, y_end, dy)
def pit(offset, x):
pit1 = []
for position in x:
pit1.append(1 - exp**(-36 * (position - offset)**2))
return pit1
def v_x(x):
vx = exp**(-x**2)
return vx
def v_y(x):
vy = 0.5 * exp**(-x**2)
return vy
def density(vx, vy):
den = []
for v1 in vx:
row = []
for v2 in vy:
row.append(v1 * v2)
den.append(row)
return den
vx = v_x(x_axis)
vy = v_y(y_axis)
den = density(vx, vy)
def contour(step=None):
return dict(
type='contour',
z=den,
colorscale=[[0, 'rgb(255,255,255)'], [1, 'rgb(49,163,84)']],
x=x_axis,
y=y_axis,
)
def vy_projection(step):
return dict(
visible=True,
type='scatter',
name=str(step),
marker=dict(color='rgb(255,0,0)'),
yaxis='y2',
x=x_axis,
y=vx * pit(step, x_axis)
)
def vx_projection(step):
return dict(
visible=True,
type='scatter',
name=str(step),
marker=dict(color='rgb(255,0,255)'),
xaxis='x2',
x=vy,
y=y_axis
)
trace1 = [
[vy_projection(step), vx_projection(step)]
for step in np.arange(-3, 3, 0.5)]
for plot in trace1[-1]:
plot['visible'] = True
steps = []
for i in range(len(trace1)):
step = dict(
method='restyle',
args=['visible', [False] * len(trace1)],
)
step['args'][1][i] = True
steps.append(step)
sliders = [dict(
active=10,
currentvalue={"prefix": "Step: "},
pad={"t": len(trace1)},
steps=steps
)]
layout = dict(
autosize=False,
width=500,
height=500,
sliders=sliders,
xaxis=dict(
range=[-3, 3],
),
xaxis2=dict(
domain=[0.9, 1],
showgrid=False,
zeroline=False,
),
yaxis=dict(
range=[-3, 3],
),
yaxis2=dict(
domain=[0.9, 1],
showgrid=False,
zeroline=False,
)
)
data = trace1[0]
fig = go.Figure(data=data, layout=layout)
# plotly.offline.plot(fig, filename='manipulate.html')
plotly.offline.iplot(fig)
最佳答案
这是使用滑块控件操纵多条迹线的最小工作示例。
import plotly
plotly.offline.init_notebook_mode()
trace1 = dict(
type='scatter',
x=[0, 1],
y=[0, 0.5]
)
trace2 = dict(
type='scatter',
x=[0, 1],
y=[0, -0.5]
)
trace3 = dict(
type='scatter',
x=[0, 1],
y=[0, 1]
)
trace4 = dict(
type='scatter',
x=[0, 1],
y=[0, -1]
)
steps = [None, None]
steps[0] = dict(
method='restyle',
args=[
'visible', [False, True]
],
)
steps[1] = dict(
method='restyle',
args=[
'visible', [True, False]
],
)
sliders = dict(
steps=steps
)
layout = dict(
sliders=[sliders],
xaxis=dict(
range=[0, 1],
),
yaxis=dict(
range=[-1, 1],
),
)
data = plotly.graph_objs.Data([trace1, trace2, trace3, trace4])
fig = plotly.graph_objs.Figure(data=data, layout=layout)
# plotly.offline.plot(fig, filename='manipulate.html')
plotly.offline.iplot(fig)
关于python - plotly 。在多个绘图中使用滑块控件,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/47554585/