我有一个数据框,性别应该是男性或女性。

from io import StringIO
import pandas as pd

audit_trail = StringIO('''
course_id AcademicYear_to months TotalFee Gender
260 2017 24 100 male
260 2018 12 140 male
274 2016 36 300 mail
274 2017 24 340 female
274 2018 12 200 animal
285 2017 24 300 bird
285 2018 12 200 maela
''')

df11 = pd.read_csv(audit_trail, sep=" "  )

我能用字典纠正拼写错误。
corrections={'mail':'male', 'mael':'male', 'maae':'male'}
df11.Gender.replace(corrections)

但我正在寻找一种方法,只保留男性/女性和“其他”类别的其他选择。预期产量:
0      male
1      male
2      male
3    female
4    other
5    other
6      male
Name: Gender, dtype: object

最佳答案

将另外两个虚拟条目添加到correctionsdict:

corrections = {'male'   : 'male',    # dummy entry for male
               'female' : 'female',  # dummy entry for female
               'mail'   : 'male',
               'maela'  : 'male',
               'maae'   : 'male'}

现在,使用mapfillna
df11.Gender = df11.Gender.map(corrections).fillna('other')
df11

   course_id  AcademicYear_to  months  TotalFee  Gender
0        260             2017      24       100    male
1        260             2018      12       140    male
2        274             2016      36       300    male
3        274             2017      24       340  female
4        274             2018      12       200   other
5        285             2017      24       300   other
6        285             2018      12       200    male

关于python - 使用字典替换列值,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/45974044/

10-12 07:20