我有一个数据框,性别应该是男性或女性。
from io import StringIO
import pandas as pd
audit_trail = StringIO('''
course_id AcademicYear_to months TotalFee Gender
260 2017 24 100 male
260 2018 12 140 male
274 2016 36 300 mail
274 2017 24 340 female
274 2018 12 200 animal
285 2017 24 300 bird
285 2018 12 200 maela
''')
df11 = pd.read_csv(audit_trail, sep=" " )
我能用字典纠正拼写错误。
corrections={'mail':'male', 'mael':'male', 'maae':'male'}
df11.Gender.replace(corrections)
但我正在寻找一种方法,只保留男性/女性和“其他”类别的其他选择。预期产量:
0 male
1 male
2 male
3 female
4 other
5 other
6 male
Name: Gender, dtype: object
最佳答案
将另外两个虚拟条目添加到corrections
dict:
corrections = {'male' : 'male', # dummy entry for male
'female' : 'female', # dummy entry for female
'mail' : 'male',
'maela' : 'male',
'maae' : 'male'}
现在,使用
map
和fillna
:df11.Gender = df11.Gender.map(corrections).fillna('other')
df11
course_id AcademicYear_to months TotalFee Gender
0 260 2017 24 100 male
1 260 2018 12 140 male
2 274 2016 36 300 male
3 274 2017 24 340 female
4 274 2018 12 200 other
5 285 2017 24 300 other
6 285 2018 12 200 male
关于python - 使用字典替换列值,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/45974044/