我已经在Keras中用以下图层对vgg16进行了微调:

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
vgg16 (Model)                (None, 1, 1, 512)         14714688
_________________________________________________________________
flatten_1 (Flatten)          (None, 512)               0
_________________________________________________________________
dense_1 (Dense)              (None, 1024)              525312
_________________________________________________________________
dense_2 (Dense)              (None, 512)               524800
_________________________________________________________________
dropout_1 (Dropout)          (None, 512)               0
_________________________________________________________________
dense_3 (Dense)              (None, 10)                5130
=================================================================
Total params: 15,769,930
Trainable params: 8,134,666
Non-trainable params: 7,635,264


但是我只能通过flatten_1 , dense_1 ... , dense_3model.layers[1].output , model.layers[1].output , ... , model.layers[5].output提取输入图像的特征。

那么,如何提取vgg16中间层中的特征?

最佳答案

这是获取给定输入x_test的中间层输出的常见模式:

import keras.backend as K

get_layer = K.function(
    [model.layers[0].input, K.learning_phase()],
    [model.layers[LAYER_DESIRED].output])
layer_output = get_layer([x_test, 0])[0]


其中LAYER_DESIRED是要输出的图层的索引。

关于python - 访问keras的微调网络中的中间层的输出,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/50241063/

10-12 16:35