我是转学的新手,我正在研究2类图像的分类。我正在使用InceptionV3对这些图像进行分类。我的资料
为.jpg格式。文件夹结构采用以下格式。由于我有2个类别,因此我也给出了“ binary_crossentropy”。但是面临问题。


  父文件夹/火车/类别1
  父文件夹/火车/类别2
  
  父文件夹/测试/类别1
  父文件夹/测试/类别2


from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras import backend as K

# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)

# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)

x = Dense(512, activation='relu')(x)
x = Dense(32, activation='relu')(x)
# and a logistic layer -- we have 2 classes
predictions = Dense(2, activation='softmax')(x)

# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)


for layer in base_model.layers:
    layer.trainable = False

# we chose to train the top 2 inception blocks, i.e. we will freeze
# the first 249 layers and unfreeze the rest:
for layer in model.layers[:249]:
   layer.trainable = False
for layer in model.layers[249:]:
   layer.trainable = True

model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
        rescale=1./255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)

training_set = train_datagen.flow_from_directory(
        'C:/Users/Desktop/Transfer/train/',
        target_size=(64, 64),
        batch_size=5,
        class_mode='binary')

test_set = test_datagen.flow_from_directory(
        'C:/Users/Desktop/Transfer/test/',
        target_size=(64, 64),
        batch_size=5,
        class_mode='binary')

model.fit_generator(
        training_set,
        steps_per_epoch=1000,
        epochs=10,
        validation_data=test_set,
        validation_steps=100)

最佳答案

替换这条线

predictions = Dense(2, activation='softmax')(x)


与:

predictions = Dense(1, activation='sigmoid')(x)


或将您的目标编码为列,例如[1,0,1][[0,1],[1,0],[0,1]]相同

关于machine-learning - 检查目标时出错:预期density_8的形状为(2,),但数组的形状为(1,),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54672154/

10-11 17:17