我编写了两个Java类SingleThreadedCompute
和MultithreadedCompute
来演示以下事实(或我一直认为是事实!),如果您在单台核心计算机上并行执行以计算为中心的任务(无I/O),您不会没有得到加速。实际上,我的理解是并行执行此类任务实际上会使速度变慢,因为现在您必须处理上下文切换开销。好吧,我运行了类,并行版本出乎意料地运行得更快:单线程版本在我的计算机上始终运行仅超过7秒,而多线程版本在我的计算机上始终运行仅超过6秒。谁能解释这是怎么可能的?
如果有人要亲自看或尝试一下,这里是一些类(class)。
public final class SingleThreadedCompute {
private static final long _1B = 1000000000L; // one billion
public static void main(String[] args) {
long startMs = System.currentTimeMillis();
long total = 0;
for (long i = 0; i < _1B; i++) { total += i; }
System.out.println("total=" + total);
long elapsedMs = System.currentTimeMillis() - startMs;
System.out.println("Elapsed time: " + elapsedMs + " ms");
}
}
这是多线程版本:
public final class MultithreadedCompute {
private static final long _1B = 1000000000L; // one billion
private static final long _100M = _1B / 10L;
public static void main(String[] args) {
long startMs = System.currentTimeMillis();
System.out.println("Creating workers");
Worker[] workers = new Worker[10];
for (int i = 0; i < 10; i++) {
workers[i] = new Worker(i * _100M, (i+1) * _100M);
}
System.out.println("Starting workers");
for (int i = 0; i < 10; i++) { workers[i].start(); }
for (int i = 0; i < 10; i++) {
try {
workers[i].join();
System.out.println("Joined with thread " + i);
} catch (InterruptedException e) { /* can't happen */ }
}
System.out.println("Summing worker totals");
long total = 0;
for (int i = 0; i < 10; i++) { total += workers[i].getTotal(); }
System.out.println("total=" + total);
long elapsedMs = System.currentTimeMillis() - startMs;
System.out.println("Elapsed time: " + elapsedMs + " ms");
}
private static class Worker extends Thread {
private long start, end;
private long total;
public Worker(long start, long end) {
this.start = start;
this.end = end;
}
public void run() {
System.out.println("Computing sum " + start + " + ... + (" + end + " - 1)");
for (long i = start; i < end; i++) { total += i; }
}
public long getTotal() { return total; }
}
}
这是运行单线程版本的输出:
total=499999999500000000
Elapsed time: 7031 ms
这是运行多线程版本的输出:
Creating workers
Starting workers
Computing sum 0 + ... + (100000000 - 1)
Computing sum 100000000 + ... + (200000000 - 1)
Computing sum 200000000 + ... + (300000000 - 1)
Computing sum 300000000 + ... + (400000000 - 1)
Computing sum 400000000 + ... + (500000000 - 1)
Computing sum 500000000 + ... + (600000000 - 1)
Computing sum 600000000 + ... + (700000000 - 1)
Computing sum 700000000 + ... + (800000000 - 1)
Computing sum 800000000 + ... + (900000000 - 1)
Computing sum 900000000 + ... + (1000000000 - 1)
Joined with thread 0
Joined with thread 1
Joined with thread 2
Joined with thread 3
Joined with thread 4
Joined with thread 5
Joined with thread 6
Joined with thread 7
Joined with thread 8
Joined with thread 9
Summing worker totals
total=499999999500000000
Elapsed time: 6172 ms
编辑:有关环境的信息:
除了通过陈述上面的规范并注意到我在购买机器时(2005年8月)时指出的那样,不知道如何证明它是单核计算机,所以单核是标准的,并且我没有升级到多核(如果是这样的话)。一个选项...我不记得了)。如果Windows中有某个地方,我可以检查系统属性(显示上面的信息)以外的地方,让我知道,我将进行检查。
这是五个连续的ST和MT运行:
五次单次运行:
总计= 499999999500000000
耗时:7000毫秒
总计= 499999999500000000
耗用时间:7031毫秒
总计= 499999999500000000
耗用时间:6922毫秒
总计= 499999999500000000
耗用时间:6968毫秒
总计= 499999999500000000
耗用时间:6938毫秒
五种多线程运行:
总计= 499999999500000000
耗用时间:6047毫秒
总计= 499999999500000000
耗用时间:6141毫秒
总计= 499999999500000000
耗用时间:6063毫秒
总计= 499999999500000000
耗用时间:6282毫秒
总计= 499999999500000000
耗用时间:6125毫秒
最佳答案
这可能是由于超线程和/或流水线造成的。
来自维基百科on hyper-threading:
来自维基百科on piplining:
关于java - 意外的多线程结果,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/519099/