我通过对数据集(图像)使用转移学习获得了特征向量

X =
[[0.06381412 1.5189143  0.7007909  ... 0.22550535 0.56980544 0.07307615]
 [0.06381412 1.5189143  0.7007909  ... 0.22550535 0.56980544 0.07307615]
 [0.06381412 1.5189143  0.7007909  ... 0.22550535 0.56980544 0.07307615]
 ...
 [0.06381412 1.5189143  0.7007909  ... 0.22550535 0.56980544 0.07307615]
 [0.06381412 1.5189143  0.7007909  ... 0.22550535 0.56980544 0.07307615]
 [0.06381412 1.5189143  0.7007909  ... 0.22550535 0.56980544 0.07307615]]







imgs_train, imgs_test, y_train, y_test, = train_test_split(X, Y,test_size=0.33, random_state=42)
Mrfc = RandomForestClassifier(n_estimators = 1000,
                                 bootstrap = True,
                                 oob_score = True,
                                 criterion = 'gini',
                                 max_features = 'auto',
                                 max_depth = dep,
                                 min_samples_split = int(3000),
                                 min_samples_leaf = int(1000),
                                 max_leaf_nodes = None,
                                 n_jobs=-1
                                )
Mrfc.fit(imgs_train,y_train)
y_predict = Mrfc.predict(imgs_train)


y_predict的输出全为零:


  [0。 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ...]


Y包含标签(0或1)
该模型无法做出预测。我能做什么?

最佳答案

可能是因为标签中的类偏斜,所以对全零的预测实际上可以为您提供较高的准确性?在这种情况下,您可能要尝试为RandomForestClassifier设置class_weight =“ balanced”。

关于python - 随机森林未分类,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/55690370/

10-11 07:42