Featuretools 已经支持处理多个截止时间 https://docs.featuretools.com/automated_feature_engineering/handling_time.html
In [20]: temporal_cutoffs = ft.make_temporal_cutoffs(cutoffs['customer_id'],
....: cutoffs['cutoff_time'],
....: window_size='3d',
....: num_windows=2)
....:
In [21]: temporal_cutoffs
Out[21]:
time instance_id
0 2011-12-12 13458
1 2011-12-15 13458
2 2012-10-02 13602
3 2012-10-05 13602
4 2012-01-22 15222
5 2012-01-25 15222
In [22]: entityset = ft.demo.load_retail()
In [23]: feature_tensor, feature_defs = ft.dfs(entityset=entityset,
....: target_entity='customers',
....: cutoff_time=temporal_cutoffs,
....: cutoff_time_in_index=True,
....: max_features=4)
....:
In [24]: feature_tensor
Out[24]:
MAX(order_products.total) MIN(order_products.unit_price) STD(order_products.quantity) COUNT(order_products)
customer_id time
13458.0 2011-12-12 201.960 0.3135 10.053804 394
2011-12-15 201.960 0.3135 10.053804 394
15222.0 2012-01-22 272.250 1.1880 26.832816 5
2012-01-25 272.250 1.1880 26.832816 5
13602.0 2012-10-02 49.896 1.0395 8.732068 23
2012-10-05 49.896 1.0395 8.732068 23
但是正如您看到的,一个 ID 的多个时间点会生成一个 Pandas 多索引。如何(也许通过数据透视表?)我怎样才能获得所有以 last_x_days_MIN/MAX/... 为前缀的 MIN/MAX/... 生成的列,以便获得每个截止窗口的附加功能?
编辑所需的输出格式
initial feature 1,initial feature 2, time_frame_1_<AGGTYPE2>_Feature,time_frame_1_<AGGTYPE1>_Feature,time_frame_2_<AGGTYPE1>_Feature,time_frame_2_<AGGTYPE2>_Feature,time_frame_2_<AGGTYPE1>_Feature,time_frame_2_<AGGTYPE1>_Feature
最佳答案
您可以通过使用不同的 ft.calculate_feature_matrix
两次调用 training_windows
并将生成的特征矩阵连接在一起来实现这一点。例如,
import featuretools as ft
import pandas as pd
entityset = ft.demo.load_retail()
cutoffs = pd.DataFrame({
'customer_name': ["Micheal Nicholson", "Krista Maddox"],
'cutoff_time': [pd.Timestamp('2011-10-14'), pd.Timestamp('2011-08-18')]
})
feature_defs = ft.dfs(entityset=entityset,
target_entity='customers',
agg_primitives=["sum"],
trans_primitives=[],
max_features=1,
features_only=True)
fm_60_days = ft.calculate_feature_matrix(entityset=entityset,
features=feature_defs,
cutoff_time=cutoffs,
training_window="60 days")
fm_30_days = ft.calculate_feature_matrix(entityset=entityset,
features=feature_defs,
cutoff_time=cutoffs,
training_window="30 days")
fm_60_days.merge(fm_30_days, left_index=True, right_index=True, suffixes=("__60_days", "__30_days"))
上面的代码返回这个 DataFrame,其中我们使用最近 60 天和 30 天的数据计算了相同的特征进行计算。
SUM(order_products.quantity)__60_days SUM(order_products.quantity)__30_days
customer_name
Krista Maddox 466 306
Micheal Nicholson 710 539
注意:此示例在最新版本的 Featuretools (v0.3.1) 上运行,我们更新了演示零售数据集,使其具有可解释的名称作为客户 ID。
关于python - 在 Featuretools 中使用多个训练窗口计算相同的特征,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/52472930/