我有这样的数据框:
ID | Name | Thing | belongs | match
---+------+-------+---------+-----
1 John 10 1,2,3 9
2 John 10 2,4 8
输出应为:
John 10 1,2,3,2,4 9,9,9,8,8
我如何将它们分组?
最佳答案
def f(df):
lol = df.belongs.str.split(',').tolist()
lens = [len(lst) for lst in lol]
belongs = ','.join(map(str, np.concatenate(lol)))
match = ','.join(map(str, df.match.repeat(lens).tolist()))
return pd.Series(dict(
belongs=belongs,
match=match
))
df.groupby(['Name', 'Thing']).apply(f).reset_index()
Name Thing belongs match
0 John 10 1,2,3,2,4 9,9,9,8,8
略有不同的方法。确定差异是留给读者的任务。
def f(df):
lens = df.belongs.str.count(',') + 1
belongs = df.belongs.str.cat(sep=',')
match = df.match.repeat(lens).map(str).str.cat(sep=',')
return pd.Series(dict(
belongs=belongs,
match=match
))
print(df.groupby(['Name', 'Thing']).apply(f).reset_index())
Name Thing belongs match
0 John 10 1,2,3,2,4 9,9,9,8,8
关于python - Pandas groupby两个相似的专栏和两个不同的专栏,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/44056537/