我为n * n方阵写了一个反函数。
void inverseMatrix(int n, float **matrix)
{
float ratio,a;
int i, j, k;
for(i = 0; i < n; i++)
{
for(j = n; j < 2*n; j++)
{
if(i==(j-n))
matrix[i][j] = 1.0;
else
matrix[i][j] = 0.0;
}
}
for(i = 0; i < n; i++)
{
for(j = 0; j < n; j++)
{
if(i!=j)
{
ratio = matrix[j][i]/matrix[i][i];
for(k = 0; k < 2*n; k++)
{
matrix[j][k] -= ratio * matrix[i][k];
}
}
}
}
for(i = 0; i < n; i++)
{
a = matrix[i][i];
for(j = 0; j < 2*n; j++)
{
matrix[i][j] /= a;
}
}
//return matrix;
}
在几乎所有情况下,此方法均能正常工作,但在某些情况下(如此处所示)会失败:
1 1 1 0 1 1 1 0
1 1 2 0 1 1 2 0
1 2 0 1 1 2 1 0
1 2 0 2 1 2 0 2
我可能会忽略什么情况?
谢谢!
最佳答案
参见http://www.sourcecodesworld.com/source/show.asp?ScriptID=1086。
使用高斯乔丹算法
#include<stdio.h>
#include<stdlib.h>
int main()
{
float **A,**I,temp;
int i,j,k,matsize;
printf("Enter the size of the matrix(i.e. value of 'n' as size is
nXn):");
scanf("%d",&matsize);
A=(float **)malloc(matsize*sizeof(float *)); //allocate memory
dynamically for matrix A(matsize X matsize)
for(i=0;i<matsize;i++)
A[i]=(float *)malloc(matsize*sizeof(float));
I=(float **)malloc(matsize*sizeof(float *)); //memory allocation for
indentity matrix I(matsize X matsize)
for(i=0;i<matsize;i++)
I[i]=(float *)malloc(matsize*sizeof(float));
printf("Enter the matrix: "); // ask the user for matrix A
for(i=0;i<matsize;i++)
for(j=0;j<matsize;j++)
scanf("%f",&A[i][j]);
for(i=0;i<matsize;i++) //automatically initialize the unit matrix, e.g.
for(j=0;j<matsize;j++) // - -
if(i==j) // | 1 0 0 |
I[i][j]=1; // | 0 1 0 |
else // | 0 0 1 |
I[i][j]=0; // - -
/*---------------LoGiC starts here------------------*/ //procedure // to make the matrix A to unit matrix
for(k=0;k<matsize;k++) //by some row operations,and the same row operations of
{ //Unit mat. I gives the inverse of matrix A
temp=A[k][k]; //'temp'
// stores the A[k][k] value so that A[k][k] will not change
for(j=0;j<matsize;j++) //during the operation //A[i] //[j]/=A[k][k] when i=j=k
{
A[k][j]/=temp; //it performs // the following row operations to make A to unit matrix
I[k][j]/=temp; //R0=R0/A[0][0],similarly for I also
R0=R0/A[0][0]
} //R1=R1-R0*A[1][0] similarly for I
for(i=0;i<matsize;i++) //R2=R2-R0*A[2][0] ,,
{
temp=A[i][k]; //R1=R1/A[1][1]
for(j=0;j<matsize;j++) //R0=R0-R1*A[0][1]
{ //R2=R2-R1*A[2][1]
if(i==k)
break; //R2=R2/A[2][2]
A[i][j]-=A[k][j]*temp; //R0=R0-R2*A[0][2]
I[i][j]-=I[k][j]*temp; //R1=R1-R2*A[1][2]
}
}
}
/*---------------LoGiC ends here--------------------*/
printf("The inverse of the matrix is: "); //Print the //matrix I that now contains the inverse of mat. A
for(i=0;i<matsize;i++)
{
for(j=0;j<matsize;j++)
printf("%f ",I[i][j]);
printf(" ");
}
return 0;
}
关于c - C中的方阵求逆,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/32043346/