我目前在MapReduce方面有些挣扎。
我有以下数据集:

1,John,Computer
2,Anne,Computer
3,John,Mobile
4,Julia,Mobile
5,Jack,Mobile
6,Jack,TV
7,John,Computer
8,Jack,TV
9,Jack,TV
10,Anne,Mobile
11,Anne,Computer
12,Julia,Mobile

现在我想对MapReduce进行分组和
聚合此数据集,以便输出
不仅显示了某人购买了多少次,
而且还有什么产品,该人订购最多的产品。

因此输出应如下所示:
John 3 Computer
Anne 3 Mobile
Jack 4 TV
Julia 2 Mobile

我当前对mapper和reducer的实现
看起来像这样,它完美地返回了多少订单
但是,我真的不知道如何
获得所需的输出。
static class CountMatchesMapper extends Mapper<Object,Text,Text,IntWritable> {
    @Override
    protected void map(Object key, Text value, Context ctx) throws IOException, InterruptedException {
        String row = value.toString();
        String[] row_part = row.split(",");


            try{
                ctx.write(new Text(row_part[1]), new IntWritable(1));

            catch (IOException e) {
            }
            catch (InterruptedException e) {
            }

        }

    }
}


static class CountMatchesReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context ctx) throws IOException, InterruptedException {
        int i = 0;
        for (IntWritable value : values) i += value.get();
        try{
            ctx.write(key, new IntWritable(i));
        }
        catch (IOException e) {
        }
        catch (InterruptedException e) {
        }
    }
}

我将非常感谢任何有效的解决方案和帮助。

提前致谢!

最佳答案

如果我正确理解了您想要什么,我认为第二条输出线应该是:

Anne 3 Computer

根据输入。安妮总共购买了3种产品:2台计算机和1台移动设备。

我这里有一个非常基本和简单的方法,它没有考虑边缘情况等,但是可以给您一些指导:
    static class CountMatchesMapper extends Mapper<LongWritable, Text, Text, Text> {
    private Text outputKey = new Text();
    private Text outputValue = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context ctx) throws IOException, InterruptedException {
        String row = value.toString();
        String[] row_part = row.split(",");
        outputKey.set(row_part[1]);
        outputValue.set(row_part[2]);
        ctx.write(outputKey, outputValue);
    }
}

static class CountMatchesReducer extends Reducer<Text, Text, Text, NullWritable> {
    private Text output = new Text();

    @Override
    protected void reduce(Text key, Iterable<Text> values, Context ctx) throws IOException, InterruptedException {
        HashMap<String, Integer> productCounts = new HashMap();

        int totalProductsBought = 0;
        for (Text value : values) {
            String productBought = value.toString();
            int count = 0;
            if (productCounts.containsKey(productBought)) {
                count = productCounts.get(productBought);
            }
            productCounts.put(productBought, count + 1);
            totalProductsBought += 1;
        }

        String topProduct = getTopProductForPerson(productCounts);
        output.set(key.toString() + " " + totalProductsBought + " " + topProduct);
        ctx.write(output, NullWritable.get());
    }

    private String getTopProductForPerson(Map<String, Integer> productCounts) {
        String topProduct = "";
        int maxCount = 0;
        for (Map.Entry<String, Integer> productCount : productCounts.entrySet()) {
            if (productCount.getValue() > maxCount) {
                maxCount = productCount.getValue();
                topProduct = productCount.getKey();
            }
        }
        return topProduct;
    }
}

上面将给出您描述的输出。

如果您想要一个可扩展等的合适解决方案,那么可能需要组合键和自定义GroupComparator。这样,您就可以添加Combiner并使其效率更高。但是,以上方法应适用于一般情况。

关于java - Map Reduce-如何在单个作业中分组和聚合多个属性,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/50754015/

10-11 04:30