我打算以并行方式计算许多数字正交,最终,它们将使用一组通用数据进行所有计算(相当大的根和权重数组占用大约25 Kb的内存)。高斯-勒根德勒(Gauss-Legendre)正交方法非常简单,一开始就可以使用。我想通过声明设备double * d_droot,* d_dweight使设备中的所有线程,根和权重可用。但是我缺少了一些东西,因为我必须明确地将指针传递给数组,以使内核正常工作。我该怎么做呢?甚至,为了在设备上拥有更多的可用内存,是否有可能将根和重物消耗到设备内存的某个恒定部分?
附带的代码
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
__device__ double *d_droot, *d_dweight;
__device__ __host__
double f(double alpha,double x)
{
/*function to be integrated via gauss-legendre quadrature. */
return exp(alpha*x);
}
__global__
void lege_inte2(int n, double alpha, double a, double b, double *lroots, double *weight, double *result)
{
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
lroots[]: roots for the quadrature
weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
result[i] += weight[dummy] * f(alpha,c1 * lroots[dummy] + c2)*c1;
}
}
__global__
void lege_inte2_shared(int n,double alpha, double a, double b, double *result)
{
extern __shared__ double *d_droot;
extern __shared__ double *d_dweight;
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
d_root[]: roots for the quadrature
d_weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
{
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
printf(" Vale: %f \n", d_dweight[dummy]);
}
}
}
int main(void)
{
int N = 1<<23;
int N_nodes = 5;
double *droot, *dweight, *dresult, *d_dresult;
/*double version in host*/
droot =(double*)malloc(N_nodes*sizeof(double));
dweight =(double*)malloc(N_nodes*sizeof(double));
dresult =(double*)malloc(N*sizeof(double)); /*will recibe the results of N quadratures!*/
/*double version in device*/
cudaMalloc(&d_droot, N_nodes*sizeof(double));
cudaMalloc(&d_dweight, N_nodes*sizeof(double));
cudaMalloc(&d_dresult, N*sizeof(double)); /*results for N quadratures will be contained here*/
/*double version of the roots and weights*/
droot[0] = 0.90618;
droot[1] = 0.538469;
droot[2] = 0.0;
droot[3] = -0.538469;
droot[4] = -0.90618;
dweight[0] = 0.236927;
dweight[1] = 0.478629;
dweight[2] = 0.568889;
dweight[3] = 0.478629;
dweight[4] = 0.236927;
/*double copy host-> device*/
cudaMemcpy(d_droot, droot, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_dweight, dweight, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
// Perform SAXPY on 1M element
lege_inte2<<<(N+255)/256, 256>>>(N,1.0, -3.0, 3.0, d_droot, d_dweight, d_dresult); /*This kerlnel works OK*/
//lege_inte2_shared<<<(N+255)/256, 256>>>(N, -3.0, 3.0, d_dresult); /*why this one does not work? */
cudaMemcpy(dresult, d_dresult, N*sizeof(double), cudaMemcpyDeviceToHost);
double maxError = 0.0f;
for (int i = 0; i < N; i++)
maxError = max(maxError, abs(dresult[i]-20.03574985));
printf("Max error: %f in %i quadratures \n", maxError, N);
printf("integral: %f \n" ,dresult[0]);
cudaFree(dresult);
cudaFree(d_droot);
cudaFree(d_dweight);
}
和一个makefile来编译它:
objects = main.o
all: $(objects)
nvcc -Xcompiler -std=c99 -arch=sm_20 $(objects) -o gauss
%.o: %.cpp
nvcc -x cu -arch=sm_20 -I. -dc $< -o $@
clean:
rm -f *.o gauss
预先感谢您的任何建议
最佳答案
您对d_droot
和d_dweight
的处理有多种错误。当我编译您的代码时,会收到如下各种警告:
t640.cu(86): warning: address of a __shared__ variable "d_droot" cannot be directly taken in a host function
t640.cu(87): warning: address of a __shared__ variable "d_dweight" cannot be directly taken in a host function
t640.cu(108): warning: a __shared__ variable "d_droot" cannot be directly read in a host function
t640.cu(109): warning: a __shared__ variable "d_dweight" cannot be directly read in a host function
这不应该被忽略。
这些声明:
__device__ double *d_droot, *d_dweight;
不要定义
__shared__
变量,因此这些行:extern __shared__ double *d_droot;
extern __shared__ double *d_dweight;
没有道理此外,如果您确实希望将它们设为dynamically allocated shared variables(
extern __shared__
的用途),则需要将分配大小作为第三个内核启动参数传递,而您并没有这样做。这些语句是不正确的:
cudaMalloc(&d_droot, N_nodes*sizeof(double));
cudaMalloc(&d_dweight, N_nodes*sizeof(double));
您不能在主机代码中使用
__device__
变量的地址,而且我们也不会使用cudaMalloc
分配__device__
变量。根据定义,它是静态分配。我建议做适当的CUDA错误检查。作为快速测试,您也可以使用
cuda-memcheck
运行代码。这两种方法都将指示代码中是否存在运行时错误(尽管不是任何问题的症结所在)。这些语句也不正确:
cudaMemcpy(d_droot, droot, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_dweight, dweight, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy
是带有__device__
变量的not the correct API to use。请改用cudaMemcpyToSymbol
。下面的代码修复了这些各种用法错误,可以干净地编译,并且似乎可以正常运行。它表明没有必要将
__device__
变量作为内核参数传递:#include <math.h>
#include <stdlib.h>
#include <stdio.h>
__device__ double *d_droot, *d_dweight;
__device__ __host__
double f(double alpha,double x)
{
/*function to be integrated via gauss-legendre quadrature. */
return exp(alpha*x);
}
__global__
void lege_inte2(int n, double alpha, double a, double b, double *result)
{
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
lroots[]: roots for the quadrature
weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
}
}
__global__
void lege_inte2_shared(int n,double alpha, double a, double b, double *result)
{
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
d_root[]: roots for the quadrature
d_weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
{
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
printf(" Vale: %f \n", d_dweight[dummy]);
}
}
}
int main(void)
{
int N = 1<<23;
int N_nodes = 5;
double *droot, *dweight, *dresult, *d_dresult, *d_droot_temp, *d_dweight_temp;
/*double version in host*/
droot =(double*)malloc(N_nodes*sizeof(double));
dweight =(double*)malloc(N_nodes*sizeof(double));
dresult =(double*)malloc(N*sizeof(double)); /*will recibe the results of N quadratures!*/
/*double version in device*/
cudaMalloc(&d_droot_temp, N_nodes*sizeof(double));
cudaMalloc(&d_dweight_temp, N_nodes*sizeof(double));
cudaMalloc(&d_dresult, N*sizeof(double)); /*results for N quadratures will be contained here*/
/*double version of the roots and weights*/
droot[0] = 0.90618;
droot[1] = 0.538469;
droot[2] = 0.0;
droot[3] = -0.538469;
droot[4] = -0.90618;
dweight[0] = 0.236927;
dweight[1] = 0.478629;
dweight[2] = 0.568889;
dweight[3] = 0.478629;
dweight[4] = 0.236927;
/*double copy host-> device*/
cudaMemcpy(d_droot_temp, droot, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_dweight_temp, dweight, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(d_droot, &d_droot_temp, sizeof(double *));
cudaMemcpyToSymbol(d_dweight, &d_dweight_temp, sizeof(double *));
// Perform SAXPY on 1M element
lege_inte2<<<(N+255)/256, 256>>>(N,1.0, -3.0, 3.0, d_dresult); /*This kerlnel works OK*/
//lege_inte2_shared<<<(N+255)/256, 256>>>(N, -3.0, 3.0, d_dresult); /*why this one does not work? */
cudaMemcpy(dresult, d_dresult, N*sizeof(double), cudaMemcpyDeviceToHost);
double maxError = 0.0f;
for (int i = 0; i < N; i++)
maxError = max(maxError, abs(dresult[i]-20.03574985));
printf("Max error: %f in %i quadratures \n", maxError, N);
printf("integral: %f \n" ,dresult[0]);
cudaFree(d_dresult);
cudaFree(d_droot_temp);
cudaFree(d_dweight_temp);
}
(我不能保证结果。)
现在,关于这个问题:
甚至,为了在设备上拥有更多的可用内存,是否有可能将根和重物消耗到设备内存的某个恒定部分?
由于您对
d_dweight
和d_droot
的访问似乎是统一的:result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
然后将其may be useful to define these作为
__constant__
内存空间变量。当warp中的每个线程都在常量内存中请求相同的值(相同的位置)时,常量内存访问是最佳的。但是,__constant__
内存不能动态分配,并且将指针(仅)存储在常量内存中是没有意义的。这没有提供常量缓存机制的任何好处。因此,对代码的以下进一步修改说明了如何将这些值存储在
__constant__
内存中,但是需要静态分配。此外,这实际上并没有“节省”任何设备内存。无论是使用cudaMalloc
动态分配,使用__device__
变量静态分配还是通过__constant__
变量定义(也是静态分配),所有这些方法都需要将全局存储器支持存储在设备存储器(板载DRAM)中。演示可能的恒定内存使用量的代码:
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#define N_nodes 5
__constant__ double d_droot[N_nodes], d_dweight[N_nodes];
__device__ __host__
double f(double alpha,double x)
{
/*function to be integrated via gauss-legendre quadrature. */
return exp(alpha*x);
}
__global__
void lege_inte2(int n, double alpha, double a, double b, double *result)
{
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
lroots[]: roots for the quadrature
weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
}
}
__global__
void lege_inte2_shared(int n,double alpha, double a, double b, double *result)
{
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
d_root[]: roots for the quadrature
d_weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
{
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
printf(" Vale: %f \n", d_dweight[dummy]);
}
}
}
int main(void)
{
int N = 1<<23;
// int N_nodes = 5;
double *droot, *dweight, *dresult, *d_dresult;
/*double version in host*/
droot =(double*)malloc(N_nodes*sizeof(double));
dweight =(double*)malloc(N_nodes*sizeof(double));
dresult =(double*)malloc(N*sizeof(double)); /*will recibe the results of N quadratures!*/
/*double version in device*/
cudaMalloc(&d_dresult, N*sizeof(double)); /*results for N quadratures will be contained here*/
/*double version of the roots and weights*/
droot[0] = 0.90618;
droot[1] = 0.538469;
droot[2] = 0.0;
droot[3] = -0.538469;
droot[4] = -0.90618;
dweight[0] = 0.236927;
dweight[1] = 0.478629;
dweight[2] = 0.568889;
dweight[3] = 0.478629;
dweight[4] = 0.236927;
/*double copy host-> device*/
cudaMemcpyToSymbol(d_droot, droot, N_nodes*sizeof(double));
cudaMemcpyToSymbol(d_dweight, dweight, N_nodes*sizeof(double));
// Perform SAXPY on 1M element
lege_inte2<<<(N+255)/256, 256>>>(N,1.0, -3.0, 3.0, d_dresult); /*This kerlnel works OK*/
//lege_inte2_shared<<<(N+255)/256, 256>>>(N, -3.0, 3.0, d_dresult); /*why this one does not work? */
cudaMemcpy(dresult, d_dresult, N*sizeof(double), cudaMemcpyDeviceToHost);
double maxError = 0.0f;
for (int i = 0; i < N; i++)
maxError = max(maxError, abs(dresult[i]-20.03574985));
printf("Max error: %f in %i quadratures \n", maxError, N);
printf("integral: %f \n" ,dresult[0]);
cudaFree(d_dresult);
}
关于c++ - 在GPU中共享许多高斯勒格朗德正交的根和权重,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/28821743/