我正在研究一个R项目。我使用的数据集可从以下链接获得
https://www.kaggle.com/ranjitha1/hotel-reviews-city-chennai/data
我使用的代码是。

df1 = read.csv("chennai.csv", header = TRUE)
library(tidytext)
tidy_books <- df1 %>% unnest_tokens(word,Review_Text)
这里Review_Text是文本列。但是,出现以下错误。

最佳答案

stringsAsFactors再次罢工!

您的Review_Text列是一个因素,而不是错误信息指出的函数要求的字符向量。

我强烈建议您使用readr::read_csv而不是默认read.csv,因为它速度更快,并且其默认值不会导致此问题。否则,只需将stringsAsFactors设置为FALSE,就可以了:

> tidytext::unnest_tokens(readr::read_csv("chennai_reviews.csv"), word, Review_Text)
Parsed with column specification:
cols(
  Hotel_name = col_character(),
  Review_Title = col_character(),
  Review_Text = col_character(),
  Sentiment = col_character(),
  Rating_Percentage = col_character(),
  X6 = col_integer(),
  X7 = col_integer(),
  X8 = col_character(),
  X9 = col_character()
)
Warning: 1 parsing failure.
row # A tibble: 1 x 5 col     row   col   expected                                                                                                       actual expected   <int> <chr>      <chr>                                                                                                        <chr> actual 1  2262    X7 an integer "Expedia Booking  availability was  , only  for  Non-  AC ; ON REQUEST  OVER  PHONE got  it.\n\nRecommended" file # ... with 1 more variables: file <chr>

# A tibble: 179,883 x 9
            Hotel_name                          Review_Title Sentiment Rating_Percentage    X6    X7    X8    X9       word
                 <chr>                                 <chr>     <chr>             <chr> <int> <int> <chr> <chr>      <chr>
 1 Accord Metropolitan Excellent comfortableness during stay         3               100    NA    NA  <NA>  <NA>        its
 2 Accord Metropolitan Excellent comfortableness during stay         3               100    NA    NA  <NA>  <NA>     really
 3 Accord Metropolitan Excellent comfortableness during stay         3               100    NA    NA  <NA>  <NA>       nice
 4 Accord Metropolitan Excellent comfortableness during stay         3               100    NA    NA  <NA>  <NA>      place
 5 Accord Metropolitan Excellent comfortableness during stay         3               100    NA    NA  <NA>  <NA>         to
 6 Accord Metropolitan Excellent comfortableness during stay         3               100    NA    NA  <NA>  <NA>       stay
 7 Accord Metropolitan Excellent comfortableness during stay         3               100    NA    NA  <NA>  <NA> especially
 8 Accord Metropolitan Excellent comfortableness during stay         3               100    NA    NA  <NA>  <NA>        for
 9 Accord Metropolitan Excellent comfortableness during stay         3               100    NA    NA  <NA>  <NA>   business
10 Accord Metropolitan Excellent comfortableness during stay         3               100    NA    NA  <NA>  <NA>        and
# ... with 179,873 more rows
Warning message:
Missing column names filled in: 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9]

或者
> tidytext::unnest_tokens(read.csv("chennai_reviews.csv", stringsAsFactors = FALSE), word, Review_Text)
                                                Hotel_name
1                                      Accord Metropolitan
                                                                                                                                                                                                                                                        Review_Title
...snip...

关于r - 如何解决以下错误输入必须是任意长度的字符向量或字符向量列表,每个字符向量的长度为1,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/46341840/

10-10 20:15