这个演示代码怎么可能(取自这里: http://scikit-learn.org/dev/auto_examples/grid_search_digits.html )TypeError: __init__() got an unexpected keyword argument 'scoring'
当明显评分是一个参数( http://scikit-learn.org/dev/modules/generated/sklearn.grid_search.GridSearchCV.html#sklearn.grid_search.GridSearchCV )?
from __future__ import print_function
from sklearn import datasets
from sklearn.cross_validation import train_test_split
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC
print(__doc__)
# Loading the Digits dataset
digits = datasets.load_digits()
# To apply an classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target
# Split the dataset in two equal parts
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.5, random_state=0)
# Set the parameters by cross-validation
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
scores = ['precision', 'recall']
for score in scores:
print("# Tuning hyper-parameters for %s" % score)
print()
clf = GridSearchCV(SVC(C=1), tuned_parameters, scoring=score)
clf.fit(X_train, y_train, cv=5)
print("Best parameters set found on development set:")
print()
print(clf.best_estimator_)
print()
print("Grid scores on development set:")
print()
for params, mean_score, scores in clf.grid_scores_:
print("%0.3f (+/-%0.03f) for %r"
% (mean_score, scores.std() / 2, params))
print()
print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
print()
# Note the problem is too easy: the hyperparameter plateau is too flat and the
# output model is the same for precision and recall with ties in quality.
最佳答案
scoring
参数是 0.14 开发版本的新参数,示例代码适用于该版本。您安装的 scikit 可能是 0.13 或更早版本,它没有评分参数。
关于python - 类型错误 : __init__() got an unexpected keyword argument 'scoring' ,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/14928018/