我收到以下错误:
**File "C:\Users\sergi\Anaconda3\envs\tensorpy36gpu\lib\site-packages\keras\engine\training_utils.py", line 131, in standardize_input_data
'with shape ' + str(data_shape))
ValueError: Error when checking target: expected activation_32 to have 4 dimensions, but got array with shape (4, 4)**
当我运行fit_generator时:
fit = model.fit_generator(trainX, steps_per_epoch=len(trainX) // batch_size, validation_data=trainY,
validation_steps=len(trainY) // batch_size, epochs=10, verbose=2)
代码完成:
def model(rows, cols, channels): #channels_last
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=(rows, cols, channels)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (5, 5), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(128, (5, 5), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dense(4))
model.add(Activation('softmax'))
return model
def summarize_diagnostics(history):
# plot loss
plt.subplot(211)
plt.title('Cross Entropy Loss')
plt.plot(history.history['loss'], color='blue', label='train')
plt.plot(history.history['val_loss'], color='orange', label='test')
# plot accuracy
plt.subplot(212)
plt.title('Classification Accuracy')
plt.plot(history.history['acc'], color='blue', label='train')
plt.plot(history.history['val_acc'], color='orange', label='test')
plt.show()
opt = SGD(lr=0.001)
model = model(196, 196, 3)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
datagen = ImageDataGenerator(validation_split=0.30)
batch_size = 16
trainX = datagen.flow_from_directory("./Train/", batch_size=16, target_size=(196, 196), subset='training',
class_mode = 'categorical')
trainY = datagen.flow_from_directory("./Train/", batch_size=16, target_size=(196, 196), subset='validation',
class_mode = 'categorical')
fit = model.fit_generator(trainX, steps_per_epoch=len(trainX) // batch_size, validation_data=trainY,
validation_steps=len(trainY) // batch_size, epochs=10, verbose=2)
最佳答案
您必须在Conv层和Dense层之间展平数据
image
model.add(Conv2D(128, (5, 5), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(4))
model.add(Activation('softmax'))
关于python - Keras fit_generator:检查目标时出错:预期activation_32具有4个维,但数组的形状为(4,4),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/57945364/