这是我将PIL图像转换为base64的功能:
# input: single PIL image
def image_to_base64(self, image):
output_buffer = BytesIO()
now_time = time.time()
image.save(output_buffer, format='PNG')
print('--image.save:' + str(time.time()-now_time))
now_time = time.time()
byte_data = output_buffer.getvalue()
print('--output_buffer.getvalue:' + str(time.time()-now_time))
now_time = time.time()
encoded_input_string = base64.b64encode(byte_data)
print('--base64.b64encode:' + str(time.time()-now_time))
now_time = time.time()
input_string = encoded_input_string.decode("utf-8")
print('--encoded_input_string.decode:' + str(time.time()-now_time))
return input_string
我的输出:
--image.save:1.05138802528
--output_buffer.getvalue:0.000611066818237
--base64.b64编码:0.01047706604
--encoded_input_string.decode:0.0172328948975
如我们所见,该函数在速度上很慢。我们该怎样改进这个?
[编辑]
好!这是完整的例子
import time
import requests
import base64
from PIL import Image
from io import BytesIO
# input: single PIL image
def image_to_base64(image):
output_buffer = BytesIO()
now_time = time.time()
image.save(output_buffer, format='PNG')
print('--image.save:' + str(time.time()-now_time))
now_time = time.time()
byte_data = output_buffer.getvalue()
print('--output_buffer.getvalue:' + str(time.time()-now_time))
now_time = time.time()
encoded_input_string = base64.b64encode(byte_data)
print('--base64.b64encode:' + str(time.time()-now_time))
now_time = time.time()
input_string = encoded_input_string.decode("utf-8")
print('--encoded_input_string.decode:' + str(time.time()-now_time))
return input_string
img_url = "https://www.cityscapes-dataset.com/wordpress/wp-content/uploads/2015/07/stuttgart03.png"
response = requests.get(img_url)
img = Image.open(BytesIO(response.content))
input_string = image_to_base64(img)
这里的瓶颈是
image.save(output_buffer, format='PNG')
将PIL图像转换为字节。我认为如果可以加快这一步会很好。
最佳答案
如评论中所建议,我尝试了pyvips
如下:
#!/usr/bin/env python3
import requests
import base64
import numpy as np
from PIL import Image
from io import BytesIO
from cv2 import imencode
import pyvips
def vips_2PNG(image,compression=6):
# Convert PIL Image to Numpy array
na = np.array(image)
height, width, bands = na.shape
# Convert Numpy array to Vips image
dtype_to_format = {
'uint8': 'uchar',
'int8': 'char',
'uint16': 'ushort',
'int16': 'short',
'uint32': 'uint',
'int32': 'int',
'float32': 'float',
'float64': 'double',
'complex64': 'complex',
'complex128': 'dpcomplex',
}
linear = na.reshape(width * height * bands)
vi = pyvips.Image.new_from_memory(linear.data, width, height, bands,dtype_to_format[str(na.dtype)])
# Save to memory buffer as PNG
data = vi.write_to_buffer(f".png[compression={compression}]")
return data
def vips_including_reading_from_disk(image):
# Load image from disk
image = pyvips.Image.new_from_file('stuttgart.png', access='sequential')
# Save to memory buffer as PNG
data = image.write_to_buffer('.png')
return data
def faster(image):
image_arr = np.array(image)
_, byte_data = imencode('.png', image_arr)
return byte_data
def orig(image, faster=True):
output_buffer = BytesIO()
image.save(output_buffer, format='PNG')
byte_data = output_buffer.getvalue()
return byte_data
# img_url = "https://www.cityscapes-dataset.com/wordpress/wp-content/uploads/2015/07/stuttgart03.png"
filename = 'stuttgart.png'
img = Image.open(filename)
# r = orig(img)
# print(len(r))
# %timeit r = orig(img)
# r = faster(img)
# print(len(r))
# %timeit r = faster(img)
# r = vips_including_reading_from_disk(filename)
# print(len(r))
# %timeit r = vips_including_reading_from_disk(filename)
# r = vips_2PNG(img,0)
# print(len(r))
# %timeit r = vips_2PNG(img,0)
我正在考虑在文件大小和速度之间折衷选择
compression
参数。这就是我得到的-我不会比较绝对值,而是查看机器上相对于彼此的性能: Filesize Time
PIL 1.7MB 1.12s
OpenCV 2.0MB 173ms <--- COMPARE
vips(comp=0) 6.2MB 66ms
vips(comp=1) 2.0MB 132ms <--- COMPARE
vips(comp=2) 2.0MB 153ms
我将箭头放在要比较的箭头旁边。
关于python - 将PIL图像转换为base64的更快方法,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/58705700/