MetadataFetchFailedException

MetadataFetchFailedException

如果增加word2vec模型的模型大小,我的log就会开始出现这种异常:

org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle 6
    at org.apache.spark.MapOutputTracker$$anonfun$org$apache$spark$MapOutputTracker$$convertMapStatuses$2.apply(MapOutputTracker.scala:542)
    at org.apache.spark.MapOutputTracker$$anonfun$org$apache$spark$MapOutputTracker$$convertMapStatuses$2.apply(MapOutputTracker.scala:538)
    at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
    at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
    at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771)
    at org.apache.spark.MapOutputTracker$.org$apache$spark$MapOutputTracker$$convertMapStatuses(MapOutputTracker.scala:538)
    at org.apache.spark.MapOutputTracker.getMapSizesByExecutorId(MapOutputTracker.scala:155)
    at org.apache.spark.shuffle.BlockStoreShuffleReader.read(BlockStoreShuffleReader.scala:47)
    at org.apache.spark.rdd.ShuffledRDD.compute(ShuffledRDD.scala:98)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
    at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:96)
    at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:95)
    at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
    at scala.collection.Iterator$class.foreach(Iterator.scala:727)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
    at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
    at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
    at scala.collection.AbstractIterator.to(Iterator.scala:1157)
    at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
    at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
    at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
    at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:927)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:927)
    at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
    at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
    at org.apache.spark.scheduler.Task.run(Task.scala:89)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

我试图编写自己的“保存模型”版本,如下所示:

  def save(model: Word2VecModel, sc: SparkContext, path: String): Unit = {

    println("Saving model as CSV ..")

    val vectorSize = model.getVectors.values.head.size

    println("vectorSize="+vectorSize)

    val SEPARATOR_TOKEN = " "
    val dataArray = model.getVectors.toSeq.map { case (w, v) => Data(w, v) }

    println("Got dataArray ..")
    println("parallelize(dataArray, 10)")
    val par = sc.parallelize(dataArray, 10)
          .map(d => {

            val sb = new mutable.StringBuilder()
            sb.append(d.word)
            sb.append(SEPARATOR_TOKEN)

            for(v <- d.vector) {
              sb.append(v)
              sb.append(SEPARATOR_TOKEN)
            }
            sb.setLength(sb.length - 1)
            sb.append("\n")
            sb.toString()
          })
    println("repartition(1)")
    val rep = par.repartition(1)
    println("collect()")
    val vectorsAsString = rep.collect()

    println("Collected serialized vectors ..")

    val cfile = new mutable.StringBuilder()

    cfile.append(vectorsAsString.length)
    cfile.append(" ")
    cfile.append(vectorSize)
    cfile.append("\n")

    val sb = new StringBuilder
    sb.append("word,")
    for(i <- 0 until vectorSize) {
      sb.append("v")
      sb.append(i.toString)
      sb.append(",")
    }
    sb.setLength(sb.length - 1)
    sb.append("\n")

    for(vectorString <- vectorsAsString) {
      sb.append(vectorString)
      cfile.append(vectorString)
    }

    println("Saving file to " + new Path(path, "data").toUri.toString)
    sc.parallelize(sb.toString().split("\n"), 1).saveAsTextFile(new Path(path+".csv", "data").toUri.toString)
    sc.parallelize(cfile.toString().split("\n"), 1).saveAsTextFile(new Path(path+".cs", "data").toUri.toString)
  }

显然,它的工作方式类似于current implementation-事实并非如此。

我想要一个word2vec模型。它适用于小文件,但如果模型变大,则不行。

最佳答案

当执行器上的MetadataFetchFailedException在本地缓存中找不到分区的请求的随机映射输出,并尝试从驱动程序的MapOutputTracker远程获取它们时,将抛出MapOutputTracker

这可能导致一些结论:

  • 驱动程序的内存问题
  • 执行者的内存问题
  • 执行者迷路

  • 请查看日志以查找报告为“执行者丢失”信息的问题和/或查看Web UI的“执行者”页面,并查看执行者的工作方式。

    执行程序丢失的根本原因还可能是集群管理器已决定杀死行为不端的执行程序(可能消耗了比请求更多的内存)。

    有关更多信息,请参见其他问题FetchFailedException or MetadataFetchFailedException when processing big data set

    关于scala - 如何修复 “MetadataFetchFailedException: Missing an output location for shuffle”?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/36815506/

    10-10 10:47