我正在使用glmnet和glmnetcr来拟合序数回归模型。
不幸的是,我的模型矩阵是〜640000 *5000。它大于可以存储在32位整数中的值,并且遇到了其他人描述的相同问题:R vector size limit: "long vectors (argument 5) are not supported in .C"
如果仅使用一半的数据,则可以在具有足够内存的本地服务器上运行此文件,而不会出现任何问题。
我试图通过使用dotCall64包在上述文章中实现“解决方案”。我用.C64替换了.Fortran调用,并为每个变量指定了数据类型。但是,每次运行代码时,我要么得到无意义的lambda值(9.9e35),要么出现以下段错误:
*捕获段错误*
地址0x1511aaeb0,导致“内存未映射”
每次获得的地址和确切地址各不相同,因此我认为在实施此解决方案时做错了什么。
这是到目前为止函数lognet()中的代码(该函数最终由glmnetcr和glmnet调用,并将变量传递给fortran代码)
lognet()中的原始代码
.Fortran("lognet", parm = alpha, nobs, nvars, nc, as.double(x),
y, offset, jd, vp, cl, ne, nx, nlam, flmin, ulam, thresh,
isd, intr, maxit, kopt, lmu = integer(1), a0 = double(nlam *
nc), ca = double(nx * nlam * nc), ia = integer(nx),
nin = integer(nlam), nulldev = double(1), dev = double(nlam),
alm = double(nlam), nlp = integer(1), jerr = integer(1),
PACKAGE = "glmnet")
lognet()中的修改后的代码
.C64("lognet", SIGNATURE = c("double","int", "int", "int", "int64",
"double","double","int", "double","double"
"int", "int", "int", "double","double",
"double","int", "int", "int", "int",
"int", "double","double","int", "int",
"double","double","double","int", "int"),
parm = alpha, nobs, nvars, nc, as.double(x),
y, offset, jd, vp, cl, ne, nx, nlam, flmin, ulam, thresh,
isd, intr, maxit, kopt, lmu = integer(1), a0 = double(nlam * nc), ca = double(nx * nlam * nc), ia = integer(nx),
nin = integer(nlam), nulldev = double(1), dev = double(nlam),
alm = double(nlam), nlp = integer(1), jerr = integer(1),
PACKAGE = "glmnet")
玩具示例(数据比实际小得多)
library(glmnetcr)
library(dotCall64)
x1 <- cbind(c(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1),c(0,0,0,1,0,1,1,1,0,0,0,0,0,1,1,1),c(0,0,1,0,1,0,1,1,0,0,0,0,1,0,1,1),c(0,1,0,0,1,1,0,1,0,0,0,0,1,1,0,1),c(0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1),c(0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1),c(0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1))
y1 <- c(0,0,0,1,1,1,2,2,0,1,0,1,1,2,1,2)
testA <- glmnetcr(x=x1,y=y1,method = "forward", nlambda=10,lambda.min.ratio=0.001, alpha =1,maxit = 500,standardize=FALSE)
使用原始lognet()代码运行它不会产生任何问题。
使用修改后的lognet()代码运行它会导致奇怪的lambda值估计和/或段错误(似乎是随机发生的)。我的第一个猜测是我输入了一个错误的变量,但是我经历了两次所有操作,看不到问题所在。另一个选择是,底层的fortran代码无法处理64位整数。我知道fortran为零,并且在这种情况下甚至不确定如何开始解决问题。
最佳答案
因此,我联系了glmnet的软件包维护者。他们曾经有过转换为.C64的经验。有了他们的帮助和一点点摆弄,我得以使以下代码正常工作。为此,我创建了一个名为glmnet64的新函数,该函数调用了另一个新函数lognet64而不是原始的lognet调用。 lognet64与原始lognet函数相同,但是用以下内容替换了.Fortran调用:
.C64("lognet", SIGNATURE = c("double", "integer","integer","integer","double",
"double", "double", "integer","double", "double",
"integer","integer","integer","double", "double",
"double", "integer","integer","integer","integer",
"integer","double", "double", "integer","integer",
"double", "double", "double","integer","integer"),
parm = alpha,nobs, nvars, nc, as.double(x),
y, offset, jd, vp, cl,
ne, nx, nlam, flmin, ulam,
thresh, isd, intr, maxit, kopt,
lmu = integer(1), a0 = double(nlam * nc),
ca = double(nx * nlam * nc), ia = integer(nx), nin = integer(nlam),
nulldev = double(1), dev = double(nlam), alm = double(nlam),
nlp = integer(1), jerr = integer(1),
INTENT = c(rep("rw",4),"r",rep("rw",15),rep("w",10)),
PACKAGE = "glmnet",
NAOK = TRUE)
关键似乎是正确指定了所有变量类型。能够在.Fortran调用之前使用browser()来获得正确的权限。另外,通过指定INTENT并设置NAOK = TRUE(如预期的那样)可以提高速度。肯定会推荐那些。
关于r - 在带有glmnet和dotCall64的R中使用长向量,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54599793/