为了简单起见,下面我将现实生活场景复制为LINQPad脚本:
var total = 1 * 1000 * 1000;
var cts = new CancellationTokenSource();
var threads = Environment.ProcessorCount;
int capacity = 10;
var edbOptions = new ExecutionDataflowBlockOptions{BoundedCapacity = capacity, CancellationToken = cts.Token, MaxDegreeOfParallelism = threads};
var dbOptions = new DataflowBlockOptions {BoundedCapacity = capacity, CancellationToken = cts.Token};
var gdbOptions = new GroupingDataflowBlockOptions {BoundedCapacity = capacity, CancellationToken = cts.Token};
var dlOptions = new DataflowLinkOptions {PropagateCompletion = true};
var counter1 = 0;
var counter2 = 0;
var delay1 = 10;
var delay2 = 25;
var action1 = new Func<IEnumerable<string>, Task>(async x => {await Task.Delay(delay1); Interlocked.Increment(ref counter1);});
var action2 = new Func<IEnumerable<string>, Task>(async x => {await Task.Delay(delay2); Interlocked.Increment(ref counter2);});
var actionBlock1 = new ActionBlock<IEnumerable<string>>(action1, edbOptions);
var actionBlock2 = new ActionBlock<IEnumerable<string>>(action2, edbOptions);
var batchBlock1 = new BatchBlock<string>(5, gdbOptions);
var batchBlock2 = new BatchBlock<string>(5, gdbOptions);
batchBlock1.LinkTo(actionBlock1, dlOptions);
batchBlock2.LinkTo(actionBlock2, dlOptions);
var bufferBlock1 = new BufferBlock<string>(dbOptions);
var bufferBlock2 = new BufferBlock<string>(dbOptions);
bufferBlock1.LinkTo(batchBlock1, dlOptions);
bufferBlock2.LinkTo(batchBlock2, dlOptions);
var bcBlock = new BroadcastBlock<string>(x => x, dbOptions);
bcBlock.LinkTo(bufferBlock1, dlOptions);
bcBlock.LinkTo(bufferBlock2, dlOptions);
var mainBlock = new TransformBlock<int, string>(x => x.ToString(), edbOptions);
mainBlock.LinkTo(bcBlock, dlOptions);
mainBlock.Dump("Main Block");
bcBlock.Dump("Broadcast Block");
bufferBlock1.Dump("Buffer Block 1");
bufferBlock2.Dump("Buffer Block 2");
actionBlock1.Dump("Action Block 1");
actionBlock2.Dump("Action Block 2");
foreach(var i in Enumerable.Range(1, total))
await mainBlock.SendAsync(i, cts.Token);
mainBlock.Complete();
await Task.WhenAll(actionBlock1.Completion, actionBlock2.Completion);
counter1.Dump("Counter 1");
counter2.Dump("Counter 2");
这段代码有两个问题:
BoundedCapacity
限制为10个元素,但似乎几乎可以一次推送所有1,000,000条消息。这是预期的行为吗? mainBlock.Complete()
之后几乎立即就完成了。我希望counter1
和counter2
变量都等于total
。有没有办法实现这种行为? 最佳答案
是的,这是预期的行为because of the BroadcastBlock
:
这意味着,如果将BroadcastBlock
链接到带有BoundedCapacity
的块,则将丢失消息。
要解决此问题,您可以创建一个行为类似于BroadcastBlock
的自定义块,但可以保证将其交付给所有目标。但这并不是一件容易的事,因此您可能会满意一个更简单的变体(最初来自my old answer):
public static ITargetBlock<T> CreateGuaranteedBroadcastBlock<T>(
IEnumerable<ITargetBlock<T>> targets, DataflowBlockOptions options)
{
var targetsList = targets.ToList();
var block = new ActionBlock<T>(
async item =>
{
foreach (var target in targetsList)
{
await target.SendAsync(item);
}
}, new ExecutionDataflowBlockOptions
{
BoundedCapacity = options.BoundedCapacity,
CancellationToken = options.CancellationToken
});
block.Completion.ContinueWith(task =>
{
foreach (var target in targetsList)
{
if (task.Exception != null)
target.Fault(task.Exception);
else
target.Complete();
}
});
return block;
}
在您的情况下,用法为:
var bcBlock = CreateGuaranteedBroadcastBlock(
new[] { bufferBlock1, bufferBlock2 }, dbOptions);
关于c# - TPL数据流: Bounded capacity and waiting for completion,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/23918800/