为了简单起见,下面我将现实生活场景复制为LINQPad脚本:

var total = 1 * 1000 * 1000;
var cts = new CancellationTokenSource();
var threads = Environment.ProcessorCount;
int capacity = 10;

var edbOptions = new ExecutionDataflowBlockOptions{BoundedCapacity = capacity, CancellationToken = cts.Token, MaxDegreeOfParallelism = threads};
var dbOptions = new DataflowBlockOptions {BoundedCapacity = capacity, CancellationToken = cts.Token};
var gdbOptions = new GroupingDataflowBlockOptions {BoundedCapacity = capacity, CancellationToken = cts.Token};
var dlOptions = new DataflowLinkOptions {PropagateCompletion = true};

var counter1 = 0;
var counter2 = 0;

var delay1 = 10;
var delay2 = 25;

var action1 = new Func<IEnumerable<string>, Task>(async x => {await Task.Delay(delay1); Interlocked.Increment(ref counter1);});
var action2 = new Func<IEnumerable<string>, Task>(async x => {await Task.Delay(delay2); Interlocked.Increment(ref counter2);});

var actionBlock1 = new ActionBlock<IEnumerable<string>>(action1, edbOptions);
var actionBlock2 = new ActionBlock<IEnumerable<string>>(action2, edbOptions);

var batchBlock1 = new BatchBlock<string>(5, gdbOptions);
var batchBlock2 = new BatchBlock<string>(5, gdbOptions);

batchBlock1.LinkTo(actionBlock1, dlOptions);
batchBlock2.LinkTo(actionBlock2, dlOptions);

var bufferBlock1 = new BufferBlock<string>(dbOptions);
var bufferBlock2 = new BufferBlock<string>(dbOptions);

bufferBlock1.LinkTo(batchBlock1, dlOptions);
bufferBlock2.LinkTo(batchBlock2, dlOptions);

var bcBlock = new BroadcastBlock<string>(x => x, dbOptions);

bcBlock.LinkTo(bufferBlock1, dlOptions);
bcBlock.LinkTo(bufferBlock2, dlOptions);

var mainBlock = new TransformBlock<int, string>(x => x.ToString(), edbOptions);
mainBlock.LinkTo(bcBlock, dlOptions);

mainBlock.Dump("Main Block");
bcBlock.Dump("Broadcast Block");
bufferBlock1.Dump("Buffer Block 1");
bufferBlock2.Dump("Buffer Block 2");
actionBlock1.Dump("Action Block 1");
actionBlock2.Dump("Action Block 2");

foreach(var i in Enumerable.Range(1, total))
  await mainBlock.SendAsync(i, cts.Token);

mainBlock.Complete();

await Task.WhenAll(actionBlock1.Completion, actionBlock2.Completion);

counter1.Dump("Counter 1");
counter2.Dump("Counter 2");

这段代码有两个问题:
  • 尽管我将所有适当块的BoundedCapacity限制为10个元素,但似乎几乎可以一次推送所有1,000,000条消息。这是预期的行为吗?
  • 尽管整个网络都配置为传播完成,但似乎所有块在调用mainBlock.Complete()之后几乎立即就完成了。我希望counter1counter2变量都等于total。有没有办法实现这种行为?
  • 最佳答案

    是的,这是预期的行为because of the BroadcastBlock :



    这意味着,如果将BroadcastBlock链接到带有BoundedCapacity的块,则将丢失消息。

    要解决此问题,您可以创建一个行为类似于BroadcastBlock的自定义块,但可以保证将其交付给所有目标。但这并不是一件容易的事,因此您可能会满意一个更简单的变体(最初来自my old answer):

    public static ITargetBlock<T> CreateGuaranteedBroadcastBlock<T>(
        IEnumerable<ITargetBlock<T>> targets, DataflowBlockOptions options)
    {
        var targetsList = targets.ToList();
    
        var block = new ActionBlock<T>(
            async item =>
            {
                foreach (var target in targetsList)
                {
                    await target.SendAsync(item);
                }
            }, new ExecutionDataflowBlockOptions
            {
                BoundedCapacity = options.BoundedCapacity,
                CancellationToken = options.CancellationToken
            });
    
        block.Completion.ContinueWith(task =>
        {
            foreach (var target in targetsList)
            {
                if (task.Exception != null)
                    target.Fault(task.Exception);
                else
                    target.Complete();
            }
        });
    
        return block;
    }
    

    在您的情况下,用法为:
    var bcBlock = CreateGuaranteedBroadcastBlock(
        new[] { bufferBlock1, bufferBlock2 }, dbOptions);
    

    关于c# - TPL数据流: Bounded capacity and waiting for completion,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/23918800/

    10-11 00:49