我想做类似于this question的操作,但是要用stereoCalibrate()
而不是calibrateCamera()
。即,计算用于立体相机校准的重投影误差。
我的简化示例如下所示:
import cv2
import numpy as np
def calibrate_stereo(w, h, objpoints, imgpoints_l, imgpoints_r):
stereocalib_criteria = (cv2.TERM_CRITERIA_COUNT + cv2.TERM_CRITERIA_EPS , 1000, 1e-6)
retval, A1, D1, A2, D2, R, T, E, F = cv2.stereoCalibrate(objpoints,imgpoints_l, imgpoints_r,None,None,None,None, (w,h), flags=0, criteria=stereocalib_criteria)
return (retval, (A1,D1,A2,D2, R, T, E, F))
def calc_rms_stereo(objectpoints, imgpoints_l, imgpoints_r, A1, D1, A2, D2, R, T):
tot_error = 0
total_points = 0
for i, objpoints in enumerate(objectpoints):
# calculate world <-> cam1 transformation
_, rvec_l, tvec_l,_ = cv2.solvePnPRansac(objpoints, imgpoints_l[i], A1, D1)
# compute reprojection error for cam1
rp_l, _ = cv2.projectPoints(objpoints, rvec_l, tvec_l, A1, D1)
tot_error += np.sum(np.square(np.float64(imgpoints_l[i] - rp_l)))
total_points += len(objpoints)
# calculate world <-> cam2 transformation
rvec_r, tvec_r = cv2.composeRT(rvec_l,tvec_l,cv2.Rodrigues(R)[0],T)[:2]
# compute reprojection error for cam2
rp_r,_ = cv2.projectPoints(objpoints, rvec_r, tvec_r, A2, D2)
tot_error += np.square(imgpoints_r[i] - rp_r).sum()
total_points += len(objpoints)
mean_error = np.sqrt(tot_error/total_points)
return mean_error
if __name__ == "__main__":
# omitted: reading values for w,h, objectPoints, imgpoints_l, imgpoints_r from file (format as expected by the OpenCV functions)
# [...]
rms, (A1,D1,A2,D2,R,T,_,_) = calibrate_stereo(w, h, objectpoints, imgpoints_l, imgpoints_r)
print("RMS (stereo calib): {}".format(rms))
rms_2 = calc_rms_stereo(objectpoints, imgpoints_l, imgpoints_r, A1, D1, A2, D2, R, T)
print("RMS (custom calculation):", rms_2)
样本输出:
RMS (stereo calib): 0.14342257926694932
RMS (custom calculation): 0.356273345751
据我所知,
stereoCalibrate()
的源代码中的计算与我的非常相似。我想念什么?Ubuntu上的OpenCV 3.3.0
最佳答案
在基于OpenCV实现实现自定义立体声校准算法后,我解决了该问题。cv2.stereoCalibrate()
内部计算的重投影误差与我的自定义计算之间的差异源于外部参数rvec_l
和tvec_l
的不同值。这些 vector 描述了左摄像机和每个图像的校准图案之间的旋转和平移。 cv2.solvePnpRansac()
仅基于左图像的重投影误差产生优化值,而在cv2.stereoCalibrate()
中,这些值与R
和T
基于每个立体声对的两个图像中的重投影误差一起优化。
如果要精确复制cv2.stereoCalibrate()
返回的RMS值,则必须修改cv::stereoCalibrate()
的C / C++源代码以也返回优化的外部参数(cv::calibrateCamera()
已经做到了单眼校准)。
关于python - OpenCV + Python:计算立体声重投影错误,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/47329154/