我有这样的数据框,
数据:
Site code Col1 Col2 Col3
A5252 24 53 NaN
A5636 36 NaN NaN
A4366 NaN NaN NaN
A7578 42 785 24
我想计算具有某些值的列数,但没有NaN。
所需的输出:
Site code Col1 Col2 Col3 Count
A5252 24 53 NaN 2
A5636 36 NaN NaN 1
A4366 NaN NaN NaN 0
A7578 42 785 24 3
与此相反的事情:
df = data.isnull()。sum(axis = 1)
最佳答案
#if first columns is not index, set it
data = data.set_index('Site code')
data['Count'] = data.notnull().sum(axis=1)
或使用函数
DataFrame.count
:data = data.set_index('Site code')
data['Count'] = data.count(axis=1)
print (data)
Col1 Col2 Col3 Count
Site code
A5252 24.0 53.0 NaN 2
A5636 36.0 NaN NaN 1
A4366 NaN NaN NaN 0
A7578 42.0 785.0 24.0 3
通过
loc
选择列的另一种解决方案(Site code
是column,而不是index
):print (data.loc[:, 'Col1':])
Col1 Col2 Col3
0 24.0 53.0 NaN
1 36.0 NaN NaN
2 NaN NaN NaN
3 42.0 785.0 24.0
data['Count'] = data.loc[:, 'Col1':].count(axis=1)
print (data)
Site code Col1 Col2 Col3 Count
0 A5252 24.0 53.0 NaN 2
1 A5636 36.0 NaN NaN 1
2 A4366 NaN NaN NaN 0
3 A7578 42.0 785.0 24.0 3
Jon Clements的另一个好主意-使用
filter
:data['Count'] = data.filter(regex="^Col").count(axis=1)
print (data)
Site code Col1 Col2 Col3 Count
0 A5252 24.0 53.0 NaN 2
1 A5636 36.0 NaN NaN 1
2 A4366 NaN NaN NaN 0
3 A7578 42.0 785.0 24.0 3
关于python - 计算pandas中每行具有一些值的列数,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/44717137/