中学程序GCD
第一步找出m的素因子。
第二步找出n的素因子。
步骤3确定两个素数展开中的所有公共因子
在Step 1
和Step 2
中找到。(如果P是出现PM和
pn时间分别为m和n,应重复min{pm,pn}
几次。)
步骤4计算所有公共因子的乘积,并将其返回为
给定数的最大公约数。
因此,对于数字60和24,我们得到60 = 2 . 2 . 3 . 5
24 = 2 . 2 . 2 . 3
gcd(60, 24) = 2 . 2 . 3 = 12.
根据上面的说明,这就是我目前所得到的:
import numpy as np
#find prime factors of m and output it to list fm
def Middle(m,n):
c = 2
fm = [ ]
while m > 1:
if m % c == 0:
fm.append(c)
m = m/c
else:
c = c + 1
return fm
#find prime factors of n and output it to list fn
d = 2
fn = [ ]
while n > 1:
if n % d == 0:
fn.append(d)
n = n/d
else:
d = d + 1
return fn
#compare fm and fn and multiply common items
#this is the part where I got wrong
cf = []
for f in fm:
if f in fn:
cf.append(f)
return (np.prod(cf))
我知道最后一部分是错误的,但我不知道如何解决它。说明书上说要把f重复到最低限度,但我一无所知。请帮忙。
最佳答案
import numpy as np
from collections import Counter
# Find the prime factors of a integer
def prime_factors(n):
factors = []
i = 2
while n > 1:
if n % i == 0:
factors.append(i)
n /= i
else:
i += 1
return Counter(factors)
# Find prime factors of m and n and multiply their common ones
def Middle(m, n):
fm = prime_factors(m)
fn = prime_factors(n)
cf = fm & fn
return np.prod(list(cf.elements()))
或者你也可以用一行代码:
def Middle(m, n):
return np.prod(list((prime_factors(m) & prime_factors(n)).elements()))
关于python - Python:使用中学程序查找GCD,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/47073426/