我在Convert a Pandas DataFrame to a dictionary上找到了将数据框转换为字典的指南。但是,我似乎无法更改代码以将输出转换为字典。

以下是我的代码。

import pandas as pd
import collections


governmentcsv = pd.read_csv('government-procurement-via-gebiz.csv',parse_dates=True) #read csv and it contain dates (parse_dates = true)
extract = governmentcsv.loc[:, ['supplier_name','award_date']] #only getting these columns

extract.award_date= pd.to_datetime(extract.award_date)

def extract_supplier_not_na_2015():
    notNAFifteen = extract[(extract.supplier_name != 'na') & (extract.award_date.dt.year == 2015)] #extract only year 2015
    notNAFifteen.reset_index(drop = True,inplace=True) #reset index
    notNAFifteen.index += 1 #and index start from 1
    #SortednotNAFifteen = collections.orderedDictionary(notNAFifteen)

    return notNAFifteen

print extract_supplier_not_na_2015()


输出为:

                                          supplier_name award_date
1                               RMA CONTRACTS PTE. LTD. 2015-01-28
2     TESCOM (SINGAPORE) SOFTWARE SYSTEMS TESTING PT... 2015-07-01
3                                  MKS GLOBAL PTE. LTD. 2015-04-24
4               CERTIS TECHNOLOGY (SINGAPORE) PTE. LTD. 2015-06-26
5                    RHT COMPLIANCE SOLUTIONS PTE. LTD. 2015-08-14
6                                   CLEANMAGE PTE. LTD. 2015-07-30
7                             SOLUTIONSATWORK PTE. LTD. 2015-11-23
8                                       Ufinity Pte Ltd 2015-05-04
9                                         NCS PTE. LTD. 2015-01-28

最佳答案

我认为我找到了这个数据集:
https://data.gov.sg/dataset/government-procurement

反正这是代码

import pandas as pd


df = pd.read_csv('government-procurement-via-gebiz.csv',
                  encoding='unicode_escape',
                  parse_dates=['award_date'],
                  infer_datetime_format=True,
                  usecols=['supplier_name', 'award_date'],
)

df = df[(df['supplier_name'] != 'Unknown') & (df['award_date'].dt.year == 2015)].reset_index(drop=True)

#Faster way:
d1 = df.set_index('supplier_name').to_dict()['award_date']

#Alernatively:
d2 = dict(zip(df['supplier_name'], df['award_date']))

关于python - 如何从 Pandas 数据框转换为字典,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/58462142/

10-12 21:01