在gdi中,向图像添加阴影的有效方法是什么?
现在我从我的形象开始:
我使用imageattributes和colormatrix将图像的alpha蒙版绘制到新图像:
colorMatrix = (
( 0, 0, 0, 0, 0),
( 0, 0, 0, 0, 0),
( 0, 0, 0, 0, 0),
(-1, -1, -1, 1, 0),
( 1, 1, 1, 0, 1)
);
然后我应用高斯模糊卷积核,并稍微偏移它:
然后我在上面画出我的原始图像:
问题是它太慢了,生成带有阴影的图像大约需要170毫秒,而没有阴影的图像需要2毫秒(慢70倍):
带阴影:
171,332 µs
无阴影:
2,457us
当用户(例如me)在项目列表中滚动时,额外的169ms延迟非常明显。
您可以忽略下面的代码,它不会给问题或答案添加任何内容:
class function TImageEffects.GenerateDropShadow(image: TGPImage;
const radius: Single; const OffsetX, OffsetY: Single; const Opacity: Single): TGPBitmap;
var
width, height: Integer;
alphaMask: TGPBitmap;
shadow: TGPBitmap;
graphics: TGPGraphics;
imageAttributes: TGPImageAttributes;
cm: TColorMatrix;
begin
{
We generate a drop shadow by first getting the alpha mask. This will be a black
sillouette on a transparent background. We then blur the black "shadow" by the amounts
given.
We then draw the original image on top of it's own shadow.
}
{
http://msdn.microsoft.com/en-us/library/aa511280.aspx
Windows Vista User Experience -> Guidelines -> Aesthetics -> Icons
Basic Flat Icon Shadow Ranges
Flat icons
Flat icons are generally used for file icons and flat real-world objects,
such as a document or a piece of paper.
Flat icon lighting comes from the upper-left at 130 degrees.
Smaller icons (for example, 16x16 and 32x32) are simplified for readability.
However, if they contain a reflection within the icon (often simplified),
they may have a tight drop shadow. The drop shadow ranges in opacity from
30-50 percent.
Layer effects can be used for flat icons, but should be compared with other
flat icons. The shadows for objects will vary somewhat, according to what
looks best and is most consistent within the size set and with the other
icons in Windows Vista. On some occasions, it may even be necessary to
modify the shadows. This will especially be true when objects are laid over
others.
A subtle range of colors may be used to achieve desired outcome. Shadows help
objects sit in space. Color impacts the perceived weight of the shadow, and
may distort the image if it is too heavy.
Blend mode: Multiply
Opacity: 22% to 50% - depends on color of the item.
Angle: 130 to 120, use global light
Distance: 3 (256 thru 48x), Distance = 1 (32x, 24x)
Spread: 0
Size: 7 (256x thru 48x), Spread = 2 (32x, 24x)
}
width := image.GetWidth;
height := image.GetHeight;
//Get bitmap to hold final composited image and shadow
Result := TGPBitmap.Create(width, height, PixelFormat32bppARGB);
//Use ColorMatrix methods to "draw" the alpha image.
alphaMask := TImageEffects.GetAlphaMask(image);
try
//Blur the black and white shadow image
// shadow := TImageEffects.BoxBlur(alphaMask, radius);
shadow := TImageEffects.GaussianBlur(alphaMask, radius); //because Gaussian Blur is linearly-separable into two 1d kernels, it's actually faster than the box blur
finally
alphaMask.Free;
end;
//Draw
graphics := TGPGraphics.Create(Result);
try
//Draw the "shadow", using the passed in opacity value.
{
Color transformations are of the form
c = (r, g, b, a)
c' = (r, g, b, a)
c' = c*M
= (r, g, b, a, 1) * (0 0 0 0 0) //r
(0 0 0 0 0) //g
(0 0 0 0 0) //b
(1 1 1 1 0) //a
(0 0 0 0 1) //1
}
imageAttributes := TGPImageAttributes.Create;
{ cm := (
( 1, 0, 0, 0, 0),
( 0, 1, 0, 0, 0),
( 0, 0, 1, 0, 0),
( 0, 0, 0, 0.5, 0),
( 0, 0, 0, 0, 1)
);}
cm[0, 0] := 1; cm[0, 1] := 0; cm[0, 2] := 0; cm[0, 3] := 0; cm[0, 4] := 0;
cm[1, 0] := 0; cm[1, 1] := 1; cm[1, 2] := 0; cm[1, 3] := 0; cm[1, 4] := 0;
cm[2, 0] := 0; cm[2, 1] := 0; cm[2, 2] := 1; cm[2, 3] := 0; cm[2, 4] := 0;
cm[3, 0] := 0; cm[3, 1] := 0; cm[3, 2] := 0; cm[3, 3] := Opacity; cm[3, 4] := 0;
cm[4, 0] := 0; cm[4, 1] := 0; cm[4, 2] := 0; cm[4, 3] := 0; cm[4, 4] := 1;
imageAttributes.SetColorMatrix(
cm,
ColorMatrixFlagsDefault,
ColorAdjustTypeBitmap);
try
graphics.DrawImage(shadow,
MakeRectF(OffsetX, OffsetY, width, height), //destination rectangle
0, 0, //source (x,y)
width, height, //source width, height
UnitPixel,
ImageAttributes);
//Draw original image over-top of it's shadow
graphics.DrawImage(image, 0, 0);
finally
imageAttributes.Free;
end;
finally
graphics.Free;
end;
end;
它使用函数获取灰度alpha蒙版:
class function TImageEffects.GetAlphaMask(image: TGPImage): TGPBitmap;
var
imageAttributes: TGPImageAttributes;
cm: TColorMatrix;
graphics: TGPGraphics;
Width, Height: UINT;
begin
{
Color transformations are of the form
c = (r, g, b, a)
c' = (r, g, b, a)
c' = c*M
= (r, g, b, a, 1) * (0 0 0 0 0)
(0 0 0 0 0)
(0 0 0 0 0)
(1 1 1 1 0)
(0 0 0 0 1)
}
imageAttributes := TGPImageAttributes.Create;
{ cm := (
( 0, 0, 0, 0, 0),
( 0, 0, 0, 0, 0),
( 0, 0, 0, 0, 0),
(-1, -1, -1, 1, 0),
( 1, 1, 1, 0, 1)
);}
cm[0, 0] := 0; cm[0, 1] := 0; cm[0, 2] := 0; cm[0, 3] := 0; cm[0, 4] := 0;
cm[1, 0] := 0; cm[1, 1] := 0; cm[1, 2] := 0; cm[1, 3] := 0; cm[1, 4] := 0;
cm[2, 0] := 0; cm[2, 1] := 0; cm[2, 2] := 0; cm[2, 3] := 0; cm[2, 4] := 0;
cm[3, 0] := -1; cm[3, 1] := -1; cm[3, 2] := -1; cm[3, 3] := 1; cm[3, 4] := 0;
cm[4, 0] := 1; cm[4, 1] := 1; cm[4, 2] := 1; cm[4, 3] := 0; cm[4, 4] := 1;
imageAttributes.SetColorMatrix(
cm,
ColorMatrixFlagsDefault,
ColorAdjustTypeBitmap);
width := image.GetWidth;
height := image.GetHeight;
Result := TGPBitmap.Create(Integer(width), Integer(height));
graphics := TGPGraphics.Create(Result);
try
graphics.DrawImage(
image,
MakeRect(0, 0, width, height), //destination rectangle
0, 0, //source (x,y)
width, height,
UnitPixel,
ImageAttributes);
finally
graphics.Free;
end;
end;
核心是高斯模糊:
class function TImageEffects.GaussianBlur(const bitmap: TGPBitmap;
radius: Single): TGPBitmap;
var
width, height: Integer;
tempBitmap: TGPBitmap;
bdSource: TBitmapData;
bdTemp: TBitmapData;
bdDest: TBitmapData;
pSrc: PARGBArray;
pTemp: PARGBArray;
pDest: PARGBArray;
stride: Integer;
kernel: TKernel;
begin
// kernel := MakeGaussianKernel2d(radius);
kernel := MakeGaussianKernel1d(radius);
try
// Result := ConvolveBitmap(bitmap, kernel); brute 2d kernel
width := bitmap.GetWidth;
height := bitmap.GetHeight;
// GDI+ still lies to us - the return format is BGR, NOT RGB.
bitmap.LockBits(MakeRect(0, 0, width, height),
ImageLockModeRead,
PixelFormat32bppPARGB, bdSource);
//intermediate bitmap
tempBitmap := TGPBitmap.Create(width, height, PixelFormat32bppPARGB);
tempBitmap.LockBits(MakeRect(0, 0, width, height),
ImageLockModeWrite,
PixelFormat32bppPARGB, bdTemp);
//target bitmap
Result := TGPBitmap.Create(width, height, PixelFormat32bppARGB);
Result.LockBits(MakeRect(0, 0, width, height),
ImageLockModeWrite,
PixelFormat32bppPARGB, bdDest);
pSrc := PARGBArray(bdSource.Scan0);
pTemp := PARGBArray(bdTemp.Scan0);
pDest := PARGBArray(bdDest.Scan0);
stride := bdSource.Stride;
ConvolveAndTranspose(kernel, pSrc^, pTemp^, width, height, stride, True, EdgeActionClampEdges);
ConvolveAndTranspose(kernel, pTemp^, pDest^, height, width, stride, True, EdgeActionClampEdges);
//Unlock source
bitmap.UnlockBits(bdSource);
tempBitmap.UnlockBits(bdTemp);
Result.UnlockBits(bdDest);
//get rid of temp
tempBitmap.Free;
finally
kernel.Free;
end;
end;
它需要一个一维内核:
class function TImageEffects.MakeGaussianKernel1d(radius: Single): TKernel;
var
r: Integer;
rows: Integer;
matrix: TSingleDynArray;
sigma: Single;
sigma22: Single;
sigmaPi2: Single;
sqrtSigmaPi2: Single;
radius2: Single;
total: Single;
index: Integer;
row: Integer;
distance: Single;
i: Integer;
begin
r := Ceil(radius);
rows := r*2+1;
SetLength(matrix, rows);
sigma := radius/3.0;
sigma22 := 2*sigma*sigma;
sigmaPi2 := 2*pi*sigma;
sqrtSigmaPi2 := Sqrt(sigmaPi2);
radius2 := radius*radius;
total := 0;
Index := 0;
for row := -r to r do
begin
distance := row*row;
if (distance > radius2) then
matrix[index] := 0
else
begin
matrix[index] := Exp((-distance)/sigma22) / sqrtSigmaPi2;
total := total + matrix[index];
Inc(index);
end;
end;
//Normalize the values
for i := 0 to rows-1 do
matrix[i] := matrix[i] / total;
Result := TKernel.Create(rows, 1, matrix);
end;
高斯函数的神奇之处在于它可以分为两个一维卷积:
class procedure TImageEffects.convolveAndTranspose(kernel: TKernel;
const inPixels: array of ARGB; var outPixels: array of ARGB; width,
height, stride: Integer; alpha: Boolean; edgeAction: TEdgeAction);
var
index: Integer;
matrix: TSingleDynArray;
rows: Integer; //number of rows in the kernel
cols: Integer; //number of columns in the kernel
rows2: Integer; //half row count
cols2: Integer; //half column count
x, y: Integer; //
r, g, b, a: Single; //summed red, green, blue, alpha values
row, col: Integer;
ix, iy, ioffset: Integer;
moffset: Integer;
f: Single;
rgb: ARGB;
ir, ig, ib, ia: Integer;
function ClampPixel(value: Single): Integer;
begin
Result := Trunc(value+0.5);
if Result < 0 then
Result := 0
else if Result > 255 then
Result := 255;
end;
begin
matrix := kernel.KernelData;
cols := kernel.Width;
cols2 := cols div 2;
for y := 0 to height-1 do
begin
index := y;
ioffset := y*width;
for x := 0 to width-1 do
begin
r := 0;
g := 0;
b := 0;
a := 0;
moffset := cols2;
for col := -cols2 to cols2 do
begin
f := matrix[moffset+col];
if (f <> 0) then
begin
ix := x+col;
if ( ix < 0 ) then
begin
if ( edgeAction = EdgeActionClampEdges ) then
ix := 0
else if ( edgeAction = EdgeActionWrapEdges ) then
ix := (x+width) mod width;
end
else if ( ix >= width) then
begin
if ( edgeAction = EdgeActionClampEdges ) then
ix := width-1
else if ( edgeAction = EdgeActionWrapEdges ) then
ix := (x+width) mod width;
end;
rgb := inPixels[ioffset+ix];
a := a + f * ((rgb shr 24) and $FF);
r := r + f * ((rgb shr 16) and $FF);
g := g + f * ((rgb shr 8) and $FF);
b := b + f * ((rgb ) and $FF);
end;
end;
if alpha then
ia := ClampPixel(a)
else
ia := $FF;
ir := ClampPixel(r);
ig := ClampPixel(g);
ib := ClampPixel(b);
outPixels[index] := MakeARGB(ia, ir, ig, ib);
Inc(index, height);
end;
end;
end;
使用示例,在我的256x256源图像上:
image := TImageEffects.GenerateDropShadow(localImage, 14, 2.12132, 2.12132, 1.0);
分析表明,88.62%的时间花在了行上:
a := a + f * ((rgb shr 24) and $FF);
r := r + f * ((rgb shr 16) and $FF);
g := g + f * ((rgb shr 8) and $FF);
b := b + f * ((rgb ) and $FF);
这是每像素的alpha混合。
这让我觉得有一个更好的方法来应用一个软阴影应用模糊效果,毕竟所有的窗口和OSX应用一个下降阴影到窗口实时。
最佳答案
算法来自这个博客:http://blog.ivank.net/fastest-gaussian-blur.html。当然,它实现了最新最快的版本。:-)
它直接从我的工作代码中复制而来,因此外部假设可能反映了这一点。函数返回较大的位图以适应大小的增加。当然,在您的代码中,您需要相应地处理这个问题。它假定32位alpha图片,但可以很容易地修改为仅处理24位(CHANNELS
常量和PixelFormat
值)。
public static class DropShadow {
const int CHANNELS = 4;
public static Bitmap CreateShadow(Bitmap bitmap, int radius, float opacity) {
// Alpha mask with opacity
var matrix = new ColorMatrix(new float[][] {
new float[] { 0F, 0F, 0F, 0F, 0F },
new float[] { 0F, 0F, 0F, 0F, 0F },
new float[] { 0F, 0F, 0F, 0F, 0F },
new float[] { -1F, -1F, -1F, opacity, 0F },
new float[] { 1F, 1F, 1F, 0F, 1F }
});
var imageAttributes = new ImageAttributes();
imageAttributes.SetColorMatrix(matrix, ColorMatrixFlag.Default, ColorAdjustType.Bitmap);
var shadow = new Bitmap(bitmap.Width + 4 * radius, bitmap.Height + 4 * radius);
using (var graphics = Graphics.FromImage(shadow))
graphics.DrawImage(bitmap, new Rectangle(2 * radius, 2 * radius, bitmap.Width, bitmap.Height), 0, 0, bitmap.Width, bitmap.Height, GraphicsUnit.Pixel, imageAttributes);
// Gaussian blur
var clone = shadow.Clone() as Bitmap;
var shadowData = shadow.LockBits(new Rectangle(0, 0, shadow.Width, shadow.Height), ImageLockMode.ReadWrite, PixelFormat.Format32bppArgb);
var cloneData = clone.LockBits(new Rectangle(0, 0, clone.Width, clone.Height), ImageLockMode.ReadWrite, PixelFormat.Format32bppArgb);
var boxes = DetermineBoxes(radius, 3);
BoxBlur(shadowData, cloneData, shadow.Width, shadow.Height, (boxes[0] - 1) / 2);
BoxBlur(shadowData, cloneData, shadow.Width, shadow.Height, (boxes[1] - 1) / 2);
BoxBlur(shadowData, cloneData, shadow.Width, shadow.Height, (boxes[2] - 1) / 2);
shadow.UnlockBits(shadowData);
clone.UnlockBits(cloneData);
return shadow;
}
private static unsafe void BoxBlur(BitmapData data1, BitmapData data2, int width, int height, int radius) {
byte* p1 = (byte*)(void*)data1.Scan0;
byte* p2 = (byte*)(void*)data2.Scan0;
int radius2 = 2 * radius + 1;
int[] sum = new int[CHANNELS];
int[] FirstValue = new int[CHANNELS];
int[] LastValue = new int[CHANNELS];
// Horizontal
int stride = data1.Stride;
for (var row = 0; row < height; row++) {
int start = row * stride;
int left = start;
int right = start + radius * CHANNELS;
for (int channel = 0; channel < CHANNELS; channel++) {
FirstValue[channel] = p1[start + channel];
LastValue[channel] = p1[start + (width - 1) * CHANNELS + channel];
sum[channel] = (radius + 1) * FirstValue[channel];
}
for (var column = 0; column < radius; column++)
for (int channel = 0; channel < CHANNELS; channel++)
sum[channel] += p1[start + column * CHANNELS + channel];
for (var column = 0; column <= radius; column++, right += CHANNELS, start += CHANNELS)
for (int channel = 0; channel < CHANNELS; channel++) {
sum[channel] += p1[right + channel] - FirstValue[channel];
p2[start + channel] = (byte)(sum[channel] / radius2);
}
for (var column = radius + 1; column < width - radius; column++, left += CHANNELS, right += CHANNELS, start += CHANNELS)
for (int channel = 0; channel < CHANNELS; channel++) {
sum[channel] += p1[right + channel] - p1[left + channel];
p2[start + channel] = (byte)(sum[channel] / radius2);
}
for (var column = width - radius; column < width; column++, left += CHANNELS, start += CHANNELS)
for (int channel = 0; channel < CHANNELS; channel++) {
sum[channel] += LastValue[channel] - p1[left + channel];
p2[start + channel] = (byte)(sum[channel] / radius2);
}
}
// Vertical
stride = data2.Stride;
for (int column = 0; column < width; column++) {
int start = column * CHANNELS;
int top = start;
int bottom = start + radius * stride;
for (int channel = 0; channel < CHANNELS; channel++) {
FirstValue[channel] = p2[start + channel];
LastValue[channel] = p2[start + (height - 1) * stride + channel];
sum[channel] = (radius + 1) * FirstValue[channel];
}
for (int row = 0; row < radius; row++)
for (int channel = 0; channel < CHANNELS; channel++)
sum[channel] += p2[start + row * stride + channel];
for (int row = 0; row <= radius; row++, bottom += stride, start += stride)
for (int channel = 0; channel < CHANNELS; channel++) {
sum[channel] += p2[bottom + channel] - FirstValue[channel];
p1[start + channel] = (byte)(sum[channel] / radius2);
}
for (int row = radius + 1; row < height - radius; row++, top += stride, bottom += stride, start += stride)
for (int channel = 0; channel < CHANNELS; channel++) {
sum[channel] += p2[bottom + channel] - p2[top + channel];
p1[start + channel] = (byte)(sum[channel] / radius2);
}
for (int row = height - radius; row < height; row++, top += stride, start += stride)
for (int channel = 0; channel < CHANNELS; channel++) {
sum[channel] += LastValue[channel] - p2[top + channel];
p1[start + channel] = (byte)(sum[channel] / radius2);
}
}
}
private static int[] DetermineBoxes(double Sigma, int BoxCount) {
double IdealWidth = Math.Sqrt((12 * Sigma * Sigma / BoxCount) + 1);
int Lower = (int)Math.Floor(IdealWidth);
if (Lower % 2 == 0)
Lower--;
int Upper = Lower + 2;
double MedianWidth = (12 * Sigma * Sigma - BoxCount * Lower * Lower - 4 * BoxCount * Lower - 3 * BoxCount) / (-4 * Lower - 4);
int Median = (int)Math.Round(MedianWidth);
int[] BoxSizes = new int[BoxCount];
for (int i = 0; i < BoxCount; i++)
BoxSizes[i] = (i < Median) ? Lower : Upper;
return BoxSizes;
}
}
我想把它转换成德尔菲一定是Straighforward。
附录:根据博客上的评论,如果你有一个整数半径和三个框,你实际上可以忘记
DetermineBoxes()
并使用:BoxBlur(shadowData, cloneData, shadow.Width, shadow.Height, radius - 1);
BoxBlur(shadowData, cloneData, shadow.Width, shadow.Height, radius - 1);
BoxBlur(shadowData, cloneData, shadow.Width, shadow.Height, radius);
它的执行时间与位图本身相比可以忽略不计,但仍然…
关于algorithm - GDI +中快速投影的算法,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/7364026/