我正在使用Pandas通过Data Frames存储股价数据。数据集中有2940行。数据集快照显示如下:
时间序列数据不包含星期六和星期日的值。因此,必须填写缺失值。
这是我编写的代码,但不能解决问题:
import pandas as pd
import numpy as np
import os
os.chdir('C:/Users/Admin/Analytics/stock-prices')
data = pd.read_csv('stock-data.csv')
# PriceDate Column - Does not contain Saturday and Sunday stock entries
data['PriceDate'] = pd.to_datetime(data['PriceDate'], format='%m/%d/%Y')
data = data.sort_index(by=['PriceDate'], ascending=[True])
# Starting date is Aug 25 2004
idx = pd.date_range('08-25-2004',periods=2940,freq='D')
data = data.set_index(idx)
data['newdate']=data.index
newdate=data['newdate'].values # Create a time series column
data = pd.merge(newdate, data, on='PriceDate', how='outer')
如何填充星期六和星期日的缺失值?
最佳答案
我认为您可以将 resample
与 ffill
或 bfill
一起使用,但是在set_index
列中的 PriceDate
之前:
print (data)
ID PriceDate OpenPrice HighPrice
0 1 6/24/2016 1 2
1 2 6/23/2016 3 4
2 2 6/22/2016 5 6
3 2 6/21/2016 7 8
4 2 6/20/2016 9 10
5 2 6/17/2016 11 12
6 2 6/16/2016 13 14
data['PriceDate'] = pd.to_datetime(data['PriceDate'], format='%m/%d/%Y')
data = data.sort_values(by=['PriceDate'], ascending=[True])
data.set_index('PriceDate', inplace=True)
print (data)
ID OpenPrice HighPrice
PriceDate
2016-06-16 2 13 14
2016-06-17 2 11 12
2016-06-20 2 9 10
2016-06-21 2 7 8
2016-06-22 2 5 6
2016-06-23 2 3 4
2016-06-24 1 1 2
data = data.resample('D').ffill().reset_index()
print (data)
PriceDate ID OpenPrice HighPrice
0 2016-06-16 2 13 14
1 2016-06-17 2 11 12
2 2016-06-18 2 11 12
3 2016-06-19 2 11 12
4 2016-06-20 2 9 10
5 2016-06-21 2 7 8
6 2016-06-22 2 5 6
7 2016-06-23 2 3 4
8 2016-06-24 1 1 2
data = data.resample('D').bfill().reset_index()
print (data)
PriceDate ID OpenPrice HighPrice
0 2016-06-16 2 13 14
1 2016-06-17 2 11 12
2 2016-06-18 2 9 10
3 2016-06-19 2 9 10
4 2016-06-20 2 9 10
5 2016-06-21 2 7 8
6 2016-06-22 2 5 6
7 2016-06-23 2 3 4
8 2016-06-24 1 1 2
关于python - 在Pandas Dataframe列中填写缺少的日期值,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/38361526/